در همایش پیوند در تابستان گذشته در مورد این حرف زدم که چگونه ایدههای برگرفته شده از فیزیک میتونن درک بهتری از شبکههای اجتماعی مثل فیسبوک به ما بدن. ویدیو این ارائه رو به همراه اسلایدها و فایل صوتی رو اینجا میذاریم. ما بقیه ارائهها رو هم در قسمت «سخنرانیها، دورههای آموزشی و کلاس درس» میتونید پیدا کنید!
شب یلدا رو همه به عنوان طولانیتر شب سال میشناسیم. اما در مورد طولانیترین شب سال چیزی میدونیم؟ توی این پست شب یلدا (انقلاب زمستانی) و اول تیر (انقلاب تابستانی) رو از نظر نجومی بررسی میکنیم و درمورد علت بهوجود اومدن فصلها و تغییر طول روز و شب بحث میکنیم. امیدوارم شب یلدا بهتون خوش بگذره و آغاز زمستونی پر برکت برای همه باشه :))
چرا فصلهای مختلفی رو تجربه میکنیم؟
مدار زمین به شکل بیضی هست و خورشید توی یکی از کانونهای این بیضی قرار داره. درنتیجه زمین طی حرکت سالیانهٔ خودش، فاصلهاش نسبت به خورشید تغییر میکنه، اما مقدار این تغییر در مقابل فاصلهٔ متوسط زمین تا خورشید خیلی ناچیزه. میدونیم که زمین توی نزدیکترین وضعیت از خورشید حدود ١۴٧میلیون کیلومتر، و در دورترین حالت، حدود ١۵٢میلیون کیلومتر از خورشید فاصله داره؛ یه حساب سرنگشتی میگه که فاصلهٔ زمین تا خورشید حدوداً ٢ درصد از فاصلهٔ میانگین اختلاف پیدا میکنه که خیل کمه. به بیان فنیتر، خروج از مرکز مدار بیضوی زمین ٠.٠١٧ هست که یعنی مدار زمین خیلی شبیه به یک دایره هست تا بیضی. بنابراین عملاً ما زیاد فاصلهمون از خورشید تغییری نمیکنه.
پس این تصور رایج که فصلها به دلیل دور و نزدیک شدن زمین به خورشید اتفاق میافتن، اشتباهه. جالبه بدونید که اتفاقاً زمین توی ١٣ تیرماه به بیشترین فاصله، و توی ١۴ دی به کمترین فاصلهاش از خورشید میرسه.پس دلیل به وجود اومدن فصلها چیز دیگهای باید باشه.
در واقع دلیل اصلی اینه که محور چرخش زمین نسبت به حالت عمود بر صفحهٔ منظومهٔ شمسی کمی انحراف داره؛ یعنی شبیه فرفرهای هست که یه خرده کج باشه. بیاید به تصویر بالا نگاه کنیم. وقتی خورشید به صورت مایلتر به نیمکرهٔ شمالی زمین میتابه، فصل زمستان و وقتی تابش بهصورت عمودتر هست، فصل تابستان رو تجربه میکنیم؛ چون تفاوت توی زاویهٔ تابش خورشید باعث میشه ما توی یه مساحت مشخص از زمین، انرژی متفاوتی رو دریافت بکنیم؛ هرچقدر زاویهٔ تابش عمودتر باشه انرژی بیشتر، و هرچقدر زاویهٔ تابش مایلتر باشه انرژی کمتری بر واحد سطح از خورشید میگیریم.
ضمناً کجی محور زمین باعث میشه وقتی خورشید عمودتر میتابه، طول روز هم طولانیتر باشه، که خودش مزید بر علت میشه و فصل تابستون رو شاهد خواهیم بود. برعکسش هم برای فصل زمستون اتفاق میافته؛ زاویهٔ تابش آفتابِ مایلتر و طول روز کوتاهتر.
و یه نکتهٔ جالب دیگه اینکه توی نیمکرهٔ جنوبی، دقیقاً همهچیز برعکس نیمکرهٔ شمالی هست؛ یعنی وقتی ما داریم برنامهٔ شب چله رو برگزار میکنیم، اونجا، اول تابستونش هست. میتونید با کمک همون تصویر زاویهٔ تابش خورشید و استدلالهای بالا، خودتون ببینید چرا فصلها توی دو نیکره برعکسه.
کجی محور زمین
قبل از اینکه وارد بحث حرکت ظاهری خورشید و تغییر طول روزهای سال بشیم، توی این قسمت میخوام بهطور خلاصه، کمی درمورد مسألهٔ کجی محور زمین صحبت بشه.
اصولاً اینکه چرا سیارات حول محوری به دور خودشون میگردن، برمیگرده به دوران شکلگیری منظومهٔ شمسی؛ وقتی که تودهٔ گرد و غبار پیشستارهای خورشید در حال چرخیدن و شکلگیری بود، بعضی از مناطق بیرونیتر هم که دورتر قرارگرفته بودن، موفق شدن مقداری از مواد اطرافشون رو ازطریق گرانش جذب کنن و گویچههایی رو به وجود بیارن که بهتدریج، هستهٔ اولیهٔ سیارات رو تشکیل دادن. این فرایند جذب یا انباشت مواد توسط سیارات، همراه با چرخش بوده. و بعد از اینکه همجوشی هستهای در مرکز خورشید اتفاق افتاده و اصطلاحاً خورشید شعلهور شده، این چرخش (یا به بیان دقیقتر تکانهٔ زاویهای)، همراه سیارات باقی مونده (اصل بقای تکانهٔ زاویهای). بهخاطر همین، سیارات علاوهبر حرکت مداری به دور خورشید، یک چرخش وضعی به دور خودشون هم دارن.
حالا اینکه چرا محور چرخش به دور خودشون، کمی نسبت به عمودِ صفحهٔ منظومهٔ شمسی انحراف داره، احتمالاً بهدلیل برخوردهای شدیدی بوده که توی دوران شکلگیری منظومهٔ شمسی اتفاق میافتاده. سیارات بهشدت، توسط تکهسنگهای غولپیکر سرگردان بمباران میشدن. این برخوردها میتونستن باعث بشن که محور چرخش کمی جابهجا بشه.
محور زمین بهطور میانگین، حدود ٢٣.۴ درجه از حالت قائم انحراف داره. چون کره زمین توی قطبین کمی پخشرگی داره، نیروهای گرانشی که خورشید و ماه به زمین وارد میکنن، باعث حرکت تقدیمی زمین میشن؛ درواقع محور زمین با حفظ زاویهٔ انحراف خودش، حول محور عمود هم میچرخه؛ خیلی شبیه یه فرفره که همینطور که به دور خودش میچرخه، تلوتلو هم میخوره. البته هرکدوم از این تلو خوردنها حدوداً ٢۵٧٧٢ سال طول میکشه! شاید این رقم خیلی بزرگی بهنظر برسه، ولی دستکم باعث شده ستارهٔ قطبی که درست بالای قطب شمال کرهٔ زمین قرار داره و با استفادهٔ از اون میتونیم جهت شمال رو پیدا کنیم، تغییر کنه؛ الان ستارهای که بهعنوان ستارهٔ قطبی میشناسیمش ستارهٔ آلفای صورتفلکی دب اصغر هست، درحالیکه حدود سه هزار سال قبل از میلاد، ستارهٔ ثعبان توی صورتفلکی اژدها راهنمای جهت شمال بود.
اگه دقت کرده باشید، گفتیم کجی محور زمین «بهطور میانگین»، حدود ٢٣.۴ درجه هست. چون صفحه مداری ماه نسبت به صفحه مداری زمین به دور خورشید، حدود ۵ درجه انحراف داره، این موضوع باعث میشه کمی مقدار انحراف محور زمین تغییر کنه و با دوره تناوب حدود ١٨.۶ سال، بین بازه ٢٢.١ تا ٢۴.۵ درجه، متغیر باشه. در حال حاضر، مقدار کجی محور زمین ٢٣.٢۶ درجه هست. به این رقص محوری زمین، حرکت ناوشی یا ترقصی گفته میشه.
حرکت ظاهری سالیانه خورشید
اگه ما در قسمتهای مختلف مدار زمین به خورشید نگاه کنیم، میبینیم که انگار موقعیت خورشید در طول سال نسبت به ستارههای پسزمینه (با فرض اینکه بتونیم ستارهها رو در طول روز هم ببینیم)، تغییر میکنه؛ فرض کنید محور زمین رو دایروی در نظر بگیریم، در نتیجه خورشید هر روز کمی کمتر از ١ درجه نسبت به ستارههای پسزمینه آسمون، به سمت شرق جابهجا میشه ( تعداد روزهای سال ٣۶۵ روز و یک دایره کامل ٣۶٠ درجه هست). به مسیر حرکت ظاهری سالیانه خورشید، دایرةالبروج میگن. بهخاطر همین است که انگار خورشید در ماههای مختلف، توی برجها یا صورتفلکیهای مختلفی قرار داره.
البته که طالعبینی اساس علمی نداره و خرافاته؛ ولی از اونجایی که متأسفانه توی قرن ٢١اُم هم هنوز عده زیادی به این خزعبلات اعتقاد دارن، جا داره این نکته رو عنوان کنم: تاریخ طالعبینی حدودا به ٣٠٠٠ سال پیش برمیگرده. برجهایی که مربوط به ماه تولد هستن از اون زمان تا الان، بهخاطر حرکت تقدیمی زمین، تغییر کردن. مثلا اگه شما فروردین ماهی و توی ادبیات طالع بینی برج حمل هستید، به این معنیه که خورشید در ماه فروردین، توی صورت فلکی حمل قرار داره. این درحالیه که الان دیگه خورشید توی این برج قرار نداره. بلکه در فروردین ماه توی صورت فلکی حوت هست. بنابراین زیاد توجهی به این اراجیف ماه تولد نکنید لطفاً! :))
بهخاطر کجی محور زمین، دایرةالبروج از استوای سماوی، ٢٣.۴ درجه انحراف داره (اگر استوای کره زمین رو ادامه بدید تا کره سماوی رو قطع بکنه، بهش استوای سماوی میگن). به محل تلاقی این دو دایره، اعتدالین گفته میشه. برای نیمکره شمالی، اگه خورشید در مسیر حرکت به سمت بالای استوای سماوی باشه، این نقطه اعتدال بهاری (آغاز فصل بهار)، و اگه در مسیر حرکت به سمت پایین استوای سماوی باشه، این نقطه اعتدال پاییزی (آغاز فصل پاییز) هست. همچنین وقتی که خورشید در بالاترین نقطه دایرةالبروج نسبت به استوای سماوی قرار داره، انقلاب تابستانی (آغاز فصل تابستان) و هنگامیکه در پایینترین نقطه دایرةالبروج نسبت به استوای سماوی هست، انقلاب زمستانی (آغاز فصل زمستان) بهش گفته میشه.
محل طلوع و غروب خورشید در طول سال چطور تغییر میکنه؟
موقع اعتدال بهاری و پاییزی، خورشید دقیقاً از سمت شرق، طلوع و از سمت غرب، غروب میکنه؛ بنابراین دو بار در طول سال، این امکان وجود داره که بتونید جهتهای جغرافیاییتون رو، بهوسیله خورشید چک بکنید (البته در واقعیت، چون نقاط اعتدالین تنها در یک لحظه اتفاق میافتن ـ که لزوماً هم در لحظه طلوع یا غروب خورشید نیست ـ بنابراین مکان طلوع و غروب خورشید از محل دقیق شرق و غرب، مقدار ناچیزی اختلاف داره که میشه ازش صرفنظر کرد).
اما همین طور که از نقاط اعتدالین فاصله میگیریم، محل طلوع و غروب خورشید هم از شرق و غرب فاصله میگیره و بهسمت شمال یا جنوب متمایل میشه؛ اگه شما روی استوای زمین قرار داشته باشید، در انقلاب تابستانی، خورشید از ٢٣.۴ درجهای شمال شرق، طلوع و در ٢٣.۴ درجهای شمال غرب، غروب میکنه. برعکس، در انقلاب زمستانی، طلوع خورشید در ٢٣.۴ درجهای جنوب شرق، و غروبش در ٢٣.۴ درجهای جنوب غرب هست. بنابراین روی استوا، حداکثر انحراف محل طلوع یا غروب خورشید از شرق یا غرب، ٢٣.۴ درجه هست که در انقلاب تابستانی و انقلاب زمستانی رخ میده.
اما اگر روی خط استوا زندگی نکنید یک مقدار داستان فرق میکنه؛ در اینصورت، برای محاسبه مقدار زاویه انحراف محل طلوع و غروب خورشید از شرق و غرب جغرافیایی، باید یک فاکتورِ (عرض جغرافیایی) sec هم در اون ضرب کنید (عرض جغرافیایی، زاویه مختصاتی هست که مکان شمالی/جنوبی یک نقطه روی سطح زمین رو نشون میده و از صفر درجه در استوا، تا نود درجه شمالی/جنوبی در قطب شمال/جنوب، متغیره). مثلاً شهر تهران در عرض جغرافیایی ٣۵ درجه شمالی قرار داره. بنابراین حداکثر میزان انحراف، 23.5 * (35)sec ، حدوداً ٢٨.۶٨ درجه هست. هرچند که این یه فرمول تخمینیه، اما تا عرضهای جغرافیایی ۵٠ درجه، معتبره (اگه علاقهمند به محاسبات کامل با استفاده از هندسه کروی هستید، به اینجا مراجعه کنید).
طول روز یا شب در طول سال چطور تغییر میکنه؟
خب، فکر میکنم تا الان تقریبا به این سوال جواب داده شده باشه که چرا شب یلدا ـ که معادل با انقلاب زمستانی هست ـ طولانیترین شب ساله. با توجه به توضیحاتی که درمورد حرکت ظاهری سالیانه خورشید داده شد، حداکثر ارتفاع خورشید نسبت به افق در طول سال تغییر میکنه و زمان انقلاب زمستانی به حداقل، و زمان انقلاب تابستانی به حداکثر مقدار خودش میرسه. بنابراین در انقلاب زمستانی، خورشید مسیر کوتاهتری (دایره عظیمه کوچکتری) رو باید توی آسمون طی بکنه و در انقلاب تابستانی، روی مسیر بلندتری (دایره عظیمه بزرگتری) حرکت بکنه. هنگام اعتدال بهاری و پاییزی که حد وسط انقلابین هستن، طول روز و شب در همه جای دنیا برابره. یعنی تقریبا ١٢ ساعت روز و تقریبا ١٢ ساعت شبه.
البته، به دو دلیل، طول روز در زمان اعتدالین، یک مقداری بلندتر از طول شب هست. اولاً در زمان اعتدالین، مرکز هندسی خورشید ١٢ ساعت بالای افق هست؛ در حالیکه طلوع خورشید، طبق تعریف، لحظهایه که لبهی بالایی قرص خورشید از افق پیدا میشه (و نه مرکز خورشید)؛ و غروب خورشید هم به همین صورت، لحظهایه که لبه بالایی قرص خورشید میره زیر افق و دیگه دیده نمیشه. بنا بر این تعریف، طول روز مقداری بیشتر از ١٢ ساعت هست. علت دوم اینکه؛ به علت شکسته شدن نور خورشید توی جو زمین، ما موقع طلوع خورشید، لبه بالایی قرصش رو زودتر میبینیم، و موقع غروب، لبهی بالایی رو حتی بعد از اینکه خورشید غروب کرده هم مشاهده میکنیم. این پدیده، باعث میشه، طول روز، حدود ۶ دقیقه (بسته به اینکه دما و فشار هوا بصورت موضعی چقدر توی ارتفاعات مختلف تغییر میکنه) بیشتر از زمانی باشه که اثر شکست نور توی جو وجود نداره. بهخاطر این دو دلیلی که ذکر شد، زمان اعتدال بهاری و پاییزی، طول روز چند دقیقه بلندتر از طول شب هست.
آنالما
تصویری که میبینید، حرکت ظاهری خورشید در طول ساله که معروف به آنالمای خورشیدی هست.
داستان از این قراره که اگه توی یک ساعت خاصی از روز، مثلاً ١٢ ظهر، در طول سال از خورشید عکسبرداری کنید، میبینید که شبیه عدد هشت انگلیسی میشه. اگه امکانات عکسبرداری براتون مقدور نیست، میتونید یک میله شاخص نصب کنید و انتهای سایهی اون رو در یک ساعت خاص، در طول سال علامتگذاری کنید (دقت کنید که اگه ساعت رسمی کشور عقب یا جلو رفت، شما طبق همون ساعت قدیم خودتون عمل کنید). در نهایت، شکل آنالما بهدست میآد.
اگر به تصویر دقت کنید، میبینید که خورشید، هم به سمت بالا و پایین، و هم به سمت راست و چپ حرکت کرده. علت اینکه خورشید در طول سال ارتفاعش تغییر میکنه رو که قبلاً بررسی کردیم. ولی به نظرتون چرا باید خورشید به سمت راست و چپ هم حرکت بکنه؟ علتش اینه که مدار زمین به دور خورشید بیضوی هست و نه دایروی. بنابراین در تصویر آنالمای خورشیدی، یک کشیدگی به سمت شرق و غرب هم دیده میشه.
دوست دارم در پایان، این بیت از غزلی رو که از دوست خوبم مرتضی استاد عظیم هست، تقدیمتون کنم:
کمی آرام شو دیگر، تو ای شب زندهدار عشق! که یلدا هم سحر دارد و آخر سر به سر آید…
داستان معروف سیبی که از درخت افتاد و به سبب اون نیوتون کشف کرد که زمین جاذبه داره رو همه از بریم. این داستان چندان واقعی نیست نیوتون سالها توی اتاقش داشت با انواع و اقسام روابط سر و کله میزد تا بالاخره تونست که فیزیک جدیدی رو پایهگذاری کنه و واقعا با یک سیب نبود که نظریهای متولد شد.
اگه گرانش رو به زبان خیلی ساده بخوام بگم، میشه فرمولبندی نیوتون از حرکات سیارهها. قبلتر از نیوتون فردی به نام کپلر سه قانون رو در مورد حرکات سیارهها پیدا کرده بود.کپلر معتقد بود که سیارهها دارن در مدارهایی بیضوی به دور خورشید میچرخند که خورشید در یکی از کانونهای بیضی قرار گرفته.. زمانی که سیاره به خورشید نزدیکتره با سرعت بیشتری حرکت میکنه نسبت به زمانی که از خورشید دورتره و رابطه ی بین فاصله سیارات از خورشید و پریود حرکتشون هم به دست آورده بود.
بعدتر از کپلر، نیوتون حرکات سیارات رو با صورت بندی گرانش ارائه کرد. نیوتون میگفت گرانش یک نیروی بلندبرده و بین اجرام مختلف برقراره. اگر دو تا جرم مختلف به نحوی بتونن همدیگه رو مشاهده کنن،شروع میکنن به جذب کردن همدیگه. شدت نیرویی هم که حس میکنن متناسب با حاصل ضرب جرمشون تقسیم بر مجذور فاصله دو تا جرم از همدیگه است.
این تا اوایل قرن نوزده بهترین تصویر ما از جهان بوده. اینکه اجرام به شکلی پراکندهاند در جهان و طبق گرانش نیوتونی رفتار میکنن. اما از اونجایی که علم همواره در حال تحوله و تصویر ما از جهان ثابت نمیمونه، شواهدی پیدا شدن که باعث شد دانشمندان درباره ی این نظریه به تردید بیفتند.اوایل قرن نوزدهم اینشتین با ارائه نظریه نسبیت عام تصویر جدیدی از جهان رو ارائه کرد.در این نظریه گرانش نه یک نیرو که یک ویژگی از فضا- زمان درنظر گرفته میشه.تغییرات در فضا-زمان هم به دلیل پراکندگی اجرام در فضا به وجود میاد.یک مثال آشنا از این اجرام میتونه سیاهچاله ها باشند. سیاهچاله ها در واقع بخشی از فضا زمان هستند که حتی نور هم امکان گریختن از افق رویداد سیاهچاله ها رو نداره. معادلهی میدان در نسبیت عام با رابطهی زیر نشون داده میشه.
سمت چپ این معادله تانسور انیشتین رو میبینید. این تانسور درواقع حامی تمام اطلاعات هندسهی فضا- زمان هست.سمت راست معادله هم تانسور انرژی- تکانه رو میبینید. که درواقع حاوی تمام اطلاعات یک جرم گرانشی یا بهتر بگم یک ماده است.این جرم گرانشی میتونه زمین باشه، ستاره نوترونی باشه، یا حتی یک سیال باشه.
نسبیت عام موفقیتهای چشمگیری تا به امروز داشته. پیشبینی امواج گرانشی، توصیف سیاهچالهها، سفر در زمان و… همگی از دستاوردهای نسبیت عام هستند.اما نسبیت عام در اواسط قرن بیستم و بعدتر با چالشهای جدی مواجه شد. همین اتفاق باعث شد که دریچهی جدیدی به سوی گرانش باز بشه و نظریات جدید گرانشی متولد بشن.
اینشتین وقتی معادلهی میدان گرانشی در نسبیت عام رو نوشت با یک سوال مواجه شد. چرا جهان تحت گرانش خودش فرو نمیریزه؟ نیوتون برمبنای بینهایت بودن و همسانگردی جهان مطمئن بود که جهان تحت گرانش خودش فرو نمیریزه. نیوتون بر مبنای این فرضیات معتقد بود که هر نقطه از جهان نیروی برابری رو حس میکنه، بنابراین جهان هرگز تحت گرانش فرونمیریزه. انیشتین برای رفع این مسئله جملهای رو دستی وارد معادلاتش میکنه. این جمله به صورت یک نیروی دافعهی کیهانی، که به عنوان ثابت کیهانشناسی معرفی شده، وارد این معادلات میشه. جالبه بدونید اینشتین بعدها از این کارش به عنوان یک اشتباه بزرگ یاد میکنه.
بعد از وارد شدن جمله ی ثابت کیهان شناسی معادلهی میدان اینشتین به فرم زیر در میاد.
$$G_{\mu \nu}+ \Lambda g_{\mu \nu}=T_{\mu\nu}$$
با فرض عدم وجود ماده، یعنی در حالتی که مقدار تانسور انرژی- تکانه در این معادله صفر باشه، میتونیم به جملهی ثابت کیهانشناسی انرژی خلا رو نسبت بدیم. در این حالت لمبدا رو معادل چگالی انرژی خلا میدونیم.
اما مشکلی که تا به امروز هنوز حل نشده چی بود؟
ما باید بدونیم مقدار این ثابت کیهان شناسی چقدره و از چه مرتبهایه. نظریهی میدانهای کوانتومی مقداری رو که برای انرژی خلا پیشبینی میکنه بسیار بسیار بیشتر از عددی است که از رصدها بدست میاد. چیزی در حدود شصت تا صد و بیست مرتبهی بزرگی بزرگتر. همین اختلاف مقدار در نظریه و رصد باعث شد نظریات جدید گرانشیای متولد بشن تا شاید این مشکل رو حل کنند.
مشکل بعدیای که نسبیت عام نتونست از پسش بربیاد مسئلهی ماده تاریک بود. اگه بخوام مختصرا بگم ماجرای ماده تاریک از کجا جدی شد، باید برگردیم به رصدهایی که انجام شده و مهمترین شاهد حضور ماده تاریک نمودارهای سرعت چرخش ستارهها و کهکشانها بودند.ما از گرانش نیوتونی میدونیم که سرعت حرکت دایرهای یک ستاره از رابطهی زیر بدست میاد.
در این رابطه G ثابت جهانی گرانش، M جرم محصور و r فاصله شعاعی است. برای فواصل بیشتر از دیسک کهکشانی قانون گاوس بیان میکند که با فرض اینکه تمام جرم در مرکز محصور شده در فواصل دور مقدار جرم ثابته و سرعت باید با r-1/2کاهش پیداکنه. اما آن چیزی که رصدها نشون میده چنین نیست. رصد ها میگه از فاصله ای به بعد سرعت حرکت به مقدار ثابتی میل میکنه. انگار که برخلاف اون چیزی که از قانون گاوس میدونیم، جرم اینجا متغیره و داره با فاصله تغییر میکنه. در واقع تغییرات جرم متناسب با تغییرات فاصله است. این جرم اضافی از کجا میاد؟ به نظر میاد این وسط مادهای فراتر از مادهی مرئی وجود داره که بهش میخوایم بگیم مادهی تاریک. مادهی مرموزی که خیلی خوب نمیشناسیمش. وجود داره ولی مشاهده نمیکنیمش. برهمکنش نمیکنه و هرجایی خودش رو نشون نمیده، اما این وسط داره تو معادلاتمون و در کیهانشناسی نقش مهمی بازی میکنه.
نظریات گرانشیِ بعد از نسبیت عام تلاش هایی برای توصیف ماده تاریک هم داشته اند. البته عدهای از فیزیکدانان انرژیهای بالا معتقدند که ماده تاریک واقعا به صورت ذراتی وجود داره. و تلاشهای زیادی چه از بابت نظری و چه عملی برای توصیف و آشکارسازی ذرات ماده تاریک کردهاند.
نظریات جدید گرانشی که عمدتا ازشون به عنوان گرانش تعمیم یافته یاد میشه، اضافه کردن درجات آزادی به نظریهی نسبیت عام هست. در واقع ماجرا از این قراره که فیزیکدانان تلاش میکنن با اضافه کردن درجات آزادی به کنش نسبیت عام راهی پیدا کنند که بتونن سوالاتی که نسبیت عام نمیتونه بهشون پاسخ بده رو پاسخ بدن. این درجات آزادی در سادهترین حالت میتونه اضافه کردن یک میدان اسکالر باشه. یا عدهای هم دوست دارن بردار، تانسور یا میدانهای با رنک بالاتر اضافه کنند به این کنش. هر مدلی از گرانش که ساخته میشه باید تستپذیر باشه. یعنی نتایجی که پیشبینی میکنه با نتایج آزمایش و رصد سازگار باشه. و اساسا قابلیت در معرض آزمایش قرارگرفتن رو داشته باشه.
از دل این تلاشها مدلهای زیادی برای توصیف جهان ساخته شده اند، که اینجا مختصرا اشاره میکنم و در پستهای بعدی بهشون میپردازم.نظریههای اسکالر-تانسور، دینامیک تعمیم یافته نیوتونی، نظریهی انیشتین- اِتِر، نظریههای بایمتریک، نظریههای f(R )، گرانش غیر موضعی و گرانش ابعاد بالا مشهورترین نظریههای گرانشی اند.
سرنوشت نظریات گرانشی به کجا رسیده؟
هنوز فیزیکدانان در حال تلاشاند تا بتونن برای سوالاتی که مطرح شده نظریهای بسازند که پاسخ سوالاتشان رو بده. برای محقق شدن این امر نیاز به ایدههای بهتر و دادههای رصدی و آزمایشگاهی بیشتر دارن.
برای اینکه مختصری دربارهی درجهی آزادی در فیزیک بدونید به این آدرس مراجعه کنید. البته درجهی آزادی در متن بالا کمی متفاوت از چیزیه که در متن پیوست شده مشاهده میکنید.