رفتن به نوشته‌ها

نویسنده: عباس ریزی

فیزیک آماری و علوم کامپیوتر:
سیستم‌های پیچیده، علم شبکه‌ و پدیده‌های بحرانی

abbas.sitpor.org

بالانس تئوری چی میگه؟! (مقدمه)

این اولین پستیه که قراره در مورد چیزایی حرف بزنم که کسی در موردش زیاد نشنیده و نخونده. یک موضوع جدید و در حال توسعه که به نظرم به شدت جذابه. خب یک سری مشکلات هست توی این پست از جمله اینکه خیلی از عبارت‌ها رو «من» ترجمه کردم و هنوز ترجمه‌ی رسمی براشون ارائه نشده و یا اینکه لااقل هنوز عرف نشدند. ممکنه یک سری ایراد علمی هم وارد بشه که در آینده تصحیحشون می‌کنم. موضوع این پست Balance Theory هست، اما از اونجایی که اگر «نظریه تعادل» ترجمه بشه خیلی‌ها ممکنه در نگاه اول یاد تعادل نش یا نظریه تعادل عمومی بیفتند من به جای واژه‌ی «تعادل» از واژه‌ی «توازن» استفاده می‌کنم تا اطلاع ثانوی! درضمن مدلی که در ادامه مطرح میشه یک مدل ساده و ابتدایی هست، بنابراین احتمالا بعضی از سوال‌های شما رو در حوزه‌ی علوم اجتماعی و/یا علوم سیاسی بی‌جواب میذاره!

خیلی خب، سه‌ نفر رو فرض کنید که می‌تونند دوست یا دشمن همدیگه باشند. همین‌طور دوستی و دشمنی رو متقابل فرض کنید، یعنی اگر کسی رو دوست دارید، اونم شما رو دوست داره. حالا اگر این سه نفر دوست هم باشند، اون موقع همه چیز خوبه و تنشی پیش نمیاد؛ دوست دوست شما، دوست شماست! اصطلاحا میگیم این مجموعه‌ سه نفری در توازن قرار داره و یا اینکه متوازن -balanced- هست. اما اگر از بین این سه نفر دو نفر رابطه‌ی خوبی با همدیگه نداشته باشند اون‌موقع ممکنه تنش پیش بیاد. به عنوان مثال فرض کنید که شما، همسرتون و مادرتون رو دوست دارید با این وجود، متاسفانه، مادرتون و همسرتون رابطه‌ی خوبی با همدیگه ندارند.

 یک شبکه نامتوازن بین آلیس، باب و کرول.دوستی با خط و دشمنی با خط‌چین مشخص شده است.
یک شبکه نامتوازن بین آلیس، باب و کرول.دوستی با خط و دشمنی با خط‌چین مشخص شده است.

اجازه بدید ،از این به بعد، به خاطر راحتی بیشتر از واژه‌های دقیق «دوست» و «دشمن» برای نوع روابط استفاده کنیم و دوستی رو کاملا ۱+ و یا ۱- فرض کنیم. بنابراین شما و همسرتون دوست، شما و مادرتون دوست ولی همسر شما و مادر شما دشمن همدیگه هستند. اینجا توازن از بین میره، به عنوان مثال کافیه شما هدیه‌ای برای مادرتون بخرید، در این صورت همسرتون شاکی میشه و مجبورید شب رو توی کوچه بخوابید! حالا فرض کنید که شما و آرش، هم‌زمان از یکی از همکار/هم‌کلاسی‌هاتون به اسم احسان متنفرید. خب طبق یه قاعده‌ی قدیمی، داشتن دشمن مشترک دوستی میاره و یا اینکه دشمن دشمن شما، دوست شماست. آرش دشمن احسان و احسان دشمن شماست پس طبق این قاعده شما و آرش دوست هستید. این مجموعه هم متوازنه. حالت دیگه که ممکنه پیش بیاد این هست که شما، میثم و سهیل هر سه دشمن همدیگه باشید، خب به وضوح مشخصه که این مجموعه نامتوازن هست؛ هر لحظه ممکنه کسی علیه کسی شورش کنه!

تا اینجا چارچوب بحث ما در مورد توازن مشخص شد. جذابیت این موضوع برای ما دانشمندان (!) زمانی شروع میشه که به فکر مدل‌سازی این چارچوب باشیم. ایده‌ی اصلی این کار توسط هایدر (۱۹۵۸) مطرح شد. مثلثی فرض کنید که هر راسش یکی از سه نفر بالا باشه و ضلعی که هر دو راس رو بهم متصل میکنه رو به عنوان رابطه اون دو راس(نفر) در نظر بگیرید. اگر دو نفر دوست هم باشند، به ضلعی که دو راس متناظر با اون دو نفر رو  متصل میکنه، ۱+ نسبت میدیم و اگر دو نفر دشمن هم باشند به ضلع متصل کننده  ۱-.

اجازه بدید از نظریه‌ی گراف کمک بگیریم. مطابق شکل ما یک گراف کامل با ۳ راس و ۳ یال داریم که رئوس، نماینده‌ی اعضای مجموعه و یال‌ها تعیین کننده نوع رابطه (دوستی یا دشمنی) بین رئوس هستند. با توجه به چارچوب بالا اگر تعداد یال‌های منفی که با خط چین توی شکل زیر مشخص شده‌ند فرد باشند (یکی یا سه‌تا) اون‌موقع گراف ما و یا شبکه ما نامتوازن -unbalanced- خواهد شد.

Screenshot from 2015-08-04 20:26:34
شبکه‌های متوازن و نامتوازن و نوع آرایش آن‌ها

بنابراین مدلی که به عنوان یک «شبکه‌ اجتماعی» برای توصیف روابط بین انسان‌ها و متوازن بودنشون مطرح می‌کنیم این جوری ساخته میشه:

    1. با توجه به افراد،‌سازمان‌ها، کشورها و هرچیزی که روابط دوستی یا دشمنی دارند ما یک گراف کامل از مرتبه تعداد اعضا مشخص می‌کنیم. گراف کامل هست چون که فرض بر اینه که همه‌ی اعضا همدیگه رو می‌شناسند و رابطه دارند. به عنوان مثال به کشورهای عضو سازمان ملل فکر کنید که یا از هم خوششون میاد یا از هم بدشون میاد!
    2. هر یال یا مثبته و یا منفی. هیچ حالت بینابینی وجود نداره.
    3. یک مثلث متوازن (balanced) است اگر و تنها اگر حاصل‌ضرب علامت یال‌های آن مثبت باشه. (اگر تعداد یال‌های منفی فرد باشه: (-,-,- یا -,+,+) اون‌موقع گراف ما و یا شبکه ما نامتوازن خواهد شد.)
      شیوه‌ی قطبیده شدن جهان به دو بلوک شرق و غرب قبل از جنگ‌جهانی اول
      شیوه‌ی قطبیده شدن جهان به دو بلوک شرق و غرب قبل از جنگ‌جهانی اول

خب حالا فرض کنید که ما یک شبکه‌ی مشخص از اعضا و روابطشون داریم:

    • آیا می‌تونیم بگیم که اوضاع این شبکه چقدر متوزانه؟
    • آیا می‌تونیم با در نظر گرفتن شبکه‌ی کشورهای دنیا و روابطشون بگیم آیا ممکنه بین دو کشور صلح برقرار بشه؟ یا اگه بین دو کشور صلح برقرار شد، اون موقع این صلح موضعی (منطقه‌ای) چه اثراتی روی صلح جهانی داره؟ به عبارت دیگه اگه علامت یالی رو در یک شبکه عوض کنیم (رابطه‌ی دو نفر رو از دوستی به دشمنی و یا عکس تبدیل کنیم) اون موقع میشه فهمید برای کل شبکه چه اتفاقی می‌افته؟
  • آیا می‌تونیم پیش‌بینی کنیم در چه شرایطی ممکنه بین هوادارهای دو تیم ورزشی توی ورزشگاه آزادی درگیری و نزاع پیش میاد؟

بله، با تقریب خوبی می‌تونیم همه این‌کارها رو به لطف نظریه‌ی توازن و یا بالانس تئوری انجام بدیم.

اجازه بدید کمی عمیق‌تر بشیم. خیلی راحت اثبات میشه که فقط دو راه برای یک شبکه بزرگ وجود داره که متوازن بشه، یا همه دوست هم بشند (جامعه بهشت بشه!) و یا اینکه شبکه قطبیده بشه، به این معنی که شبکه به دو بلوک تقسیم بشه جوری که داخل هر بلوک اعضا، دوست همدیگه حساب میشند و اعضای بلوک مقابل دشمن! درست مثل زمانی که دنیا به دو بلوک شرق و غرب تقسیم شده بود؛ یه سری این ور دوست هم بودند، یه سری هم اون‌ور، بعد این‌وری‌ها نمی‌خواستند سر به تن اون‌وری‌ها باشه!

خب پس وقتی ما یک شبکه داریم که در یکی از این دو حالت نیست یعنی متوازن یا بالانس نیست. سوال مهم اینه که خب اگر بخواهیم که شبکه رو بالانس یا متوازن کنیم چه کار باید انجام بدیم؟ یک راه پیشنهادی این هست که یک یال رو به صورت تصادفی انتخاب کنیم و علامتش رو عوض کنیم و بعدش ببینیم برای سیستم چه اتفاقی می‌افته. به عبارت دیگه اگر بعد از عوض کردن اون یال، تعداد مثلث‌های متوازن در کل شبکه زیاد بشه یعنی اینکه ما تونستیم شبکه رو به یک حالت متوازن‌تر هدایت کنیم، ولی اگر با عوض کردن علامت یالی تعداد مثلث‌های متوازن شبکه کم بشه یعنی عدم‌توازن رو توی شبکه بالا بردیم.

از اون‌جایی که ما فیزیک‌پیشه هستیم، اجازه بدید با رویکرد انرژی به قضیه نگاه کنیم؛ با توجه‌ به پیش‌فرض‌های ما، انرژی شبکه باید متناسب باشه با تعداد مثلث‌های نامتوازن منهای تعداد مثلث‌های متوازن موجود درشبکه:

CodeCogsEqn_001
معادله انرژی برای یک شبکه اجتماعی

 

CodeCogsEqn
اگر دو راس دوست باشند به یال بین آن دو ۱+ نسبت می‌دهیم و اگر دشمن باشند ۱-

 

نمودار انرژی برای شبکه‌هایی با (A) سه راس و (B) چهار راس
نمودار انرژی برای شبکه‌هایی با (A) سه راس و (B) چهار راس

n تعداد کل رئوس است و به خاطر بهنجارش (Normalization) تفاضل انرژی‌ها رو بر تعداد کل مثلث‌های شبکه تقسیم کردیم تا انرژی هنجار به واحد بشه! بنابراین بیشترین مقدار انرژی ۱ و کم‌ترین مقدار ۱- خواهد شد. وجود منفی هم به این خاطر هست که هرچی انرژی کم‌تر باشه (منفی‌تر) سیستم متوازن‌تره. خب بیاید با استفاده از این رابطه نمودار انرژی رو برای دو تا شبکه‌ی کوچیک، یکی با ۳ راس و دیگری با ۴ راس بکشیم:

نمودار A انرژی یک شبکه یا ۳ راس رو نشون میده که ساده‌ترین شبکه برای بررسی هست. بنابراین انرژی شبکه یا ۱ (نامتوزان) و یا ۱- (متوازن) هست. عددی که بالای هر مثلث نوشته شده فراوانی هر کدوم هست (مثلا اینکه یک یال خط‌چین باشه سه حالت داره، بدیهیه!)

نمودار B انرژی یک شبکه‌ی با ۴ راس رو نشون میده. خب توی این شبکه علاوه بر حالات قبل، انرژی صفر هم مشاهده میشه. طبیعیه که ما توی این شبکه می‌تونیم از بالا به پایین بیایم و شبکه رو متوازن کنیم. برای این کار کافیه علامت یکی از یال‌ها رو عوض کنیم و به وضعیت پایدارتر برسیم. خب این سوال مطرح میشه که:

  • آیا توی هر شبکه‌ای ممکنه با عوض کردن علامت یک یال، به یک شبکه‌ی متوازن‌تر رسید؟
Screenshot from 2015-08-04 22:06:50
وجود حالت‌های مسدود (jammed state)

متاسفانه در مورد شبکه‌های بزرگ(تعداد راس بیشتر) حالت‌هایی در سیستم وجود داره که به Jammed States و یا به قول استیون استروگاتز Strict Jammed States معروف هستند. این حالت‌ها چیزی نیستند جزو کمینه‌های نسبی انرژی. به این معنی که انرژی این‌حالت‌ها از تمام حالت‌های ممکن که با تغییر علامت یک یال در دسترس هستند، کمتر هست. بنابراین در حالت‌های jammed یا مسدود، امکان این‌که تنها با تعویض علامت یک یال به یک حالت متوازن‌تر رفت، وجود نداره. به عبارت دیگه انرژی حالت‌های مسدود کوچکتر یا مساوی انرژی حالت‌های مجاور هست.

نکته‌ای که وجود داره اینه که حالت‌های مسدود نمی‌تونند هر مقدار انرژی اختیار کنند. در حقیقت این‌حالت‌ها حداکثر می‌تونند انرژی صفر داشته باشند (کران بالای انرژی حالت‌های مسدود صفر است). اثبات این موضوع خیلی سرراسته: هر یالی در یک حالت مسدود متعلق به مثلث‌های متوازنی هست که تعدادشون برابر با تعداد مثلث‌های نامتوازنه، چون در غیر این صورت علامت اون یال باید عوض بشه که این در تناقض با تعریف حالت مسدوده! بنابراین در شبکه‌های نسبتا بزرگ حالت‌های مسدودی وجود که انرژی این‌ حالت‌ها حداکثر صفر هست.

یک گراف Paley با ۱۳ راس،‌ به شیوه‌ی اتصال رئوس دقت کنید.
یک گراف Paley با ۱۳ راس،‌ به شیوه‌ی اتصال رئوس دقت کنید.

ویژگی جالبی در مورد حالت‌های مسدود با انرژی صفر وجود داره؛ یال‌های مثبت در این حالت‌ها عضو یال‌های گراف Paley هستند. گراف Paley گرافی هست که تعداد رئوسش (q) یک عدد اول به شکل q=4k+1 هست. هر دو راس در این گراف درصورتی وصل هستند که تفاضل شماره اون دو راس یک عدد مربع کامل باشه به پیمانه‌ی q. این گراف‌ها خیلی خوشگل‌ هستند و قیافه‌ی متقارنی دارند. می‌تونید تعدادی از این گراف‌ها رو این‌جا ببینید.

 اگر دوست دارید به یک حالت مسدود با انرژی U=0 برسید:

    1. به یال‌هایی از شبکه که عضو گراف Paley هستند «+» نسبت دهید.به سایر یال‌ها (یال‌هایی که عضو شبکه (گراف کامل) هستند ولی عضو گراف Paley نیستند) «-» نسبت دهید.
    2. یک راس جدید به شبکه اضافه کنید (وسط شبکه!). هم اکنون شبکه شما q+1 راس دارد.
    3. راس جدید را به q راس قبلی وصل کنید و به یال‌های بین این راس و سایر رئوس «-» نسبت دهید.

با این روش شما می‌تونید یک حالت مسدود با انرژی صفر بسازید که q+1 راس داره.

فکر کنم برای مقدمه کافی باشه!

  1. The Energy Landscape of Social Balance
  2. Dynamics of Social Balance on Networks
  3. STRUCTURAL BALANCE: A GENERALIZATION OF HEIDER’S THEORY’
  4. Social Balance on Networks: The Dynamics of Friendship and Enmity
  5. Statistical physics of balance theory
سخنرانی استیون استروگتز در مورد نظریه توازن

لیسانس فیزیک با بیژامه!

یادمه زمانی بچه‌هایی که می‌خواستند برند رشته‌ی هنر (دوم دبیرستان زمان ما، نظام یکمی قدیم!) معمولا از طرف خانواده نهی می‌شدند، چون که رشته ریاضی‌-فیزیک و علوم تجربی گزینه‌های نزدیک‌تری هستند برای «یه چیزی شدن» تا هنر. خونواده‌ها و مدارس کاملا مزدورانه سعی می‌کردند دانش‌آموز بیچاره رو متقاعد کنند که وارد رشته‌های ریاضی و تجربی بشه چون که آینده بهتری در انتظارش خواهد بود! توجیه اکثر خونواده‌ها هم این بود: «درسته که به موسیقی علاقه‌داری ولی برای اینکه بتونی کار گیر بیاری بهتره بری درس مهندسی بخونی (مثلا!) و اینکه تو می‌تونی در کنار ریاضی و فیزیک خوندن (توی مدرسه و بعد دانشگاه) ، موسیقی هم یاد بگیری ولی نمی‌تونی بری رشته‌ی هنر و بعد در کنارش ریاضی یا فیزیک یاد بگیری که!» مسئله این بود که انگار با رفتن به موسسه‌ای که موسیقی تدریس می‌کرد، یادگیری موسیقی امکان‌پذیر بود در حالی که خارج از محیط مدرسه و دانشگاه یادگیری ریاضی و فیزیک خیر. به نظر من این توجیه‌ها یکی از بدترین انتقام‌هایی بود که نظام آموزشی بیمار ما از علم گرفت. امیدوارم این طرز تفکر امروز از بین‌ رفته باشه چون که امروز واقعا میشه دانشگاه نرفت ولی ریاضی و فیزیک یادگرفت!

توی این پست قصد دارم نشون بدم که تمام دروسی که یک دانشجوی کارشناسی فیزیک میگذرونه رو بدون رفتن به دانشگاه میشه گذروند، حتی با کیفیت بالاتر! امروز با وجود آموزش آنلاین این امکان هست که شما توی خونتون، زیر کولر و با بیژامه بشیند و مکانیک کوانتومی یا الکترومغناطیس یادبگیرید، اون هم از بهترین اساتید بهترین دانشگاه‌های دنیا!

دانشگاه‌های معتبر جهان که کلاس‌های درس خود را رایگان از طریق وب منتشر می‌کنند.
دانشگاه‌های معتبر جهان که کلاس‌های درس خود را رایگان از طریق وب منتشر می‌کنند.

دروس دانشجوهای فیزیک به سه دسته‌ی: ۱) دروس پایه ۲) دروس تخصصی ۳) دروس انتخابی تقسیم می‌شند که من سعی می‌کنم تا اونجایی که یادم هست لینک کورس‌‌(دوره)‌هایی که مرتبط با هر درس هست رو بذارم.

۱) دروس پایه:

نام درس

ارائه کننده

ریاضی‌پایه۱

Coursera , MIT OCW , مکتب‌‌خونه

ریاضی‌پایه ۲‍

  Coursera , MIT OCW , مکتب‌‌خونه، Khan Academy

فیزیک‌پایه۱

Coursera , edX, MIT OCW, مکتب‌‌خونه (۱) و (۲) ,  Yale University

فیزیک‌پایه۲

 edX, MIT OCW , مکتب‌‌خونه,  Yale University

فیزیک‌پایه۳

 edX, MIT OCW 

شیمی عمومی

UC Berkeley , The Ohio State University, MIT OCWKhan Academy

معادلات دیفرانسیل

 (1) , (2) edX, MIT OCW, مکتب‌‌خونه ، دانشگاه تهران ،  Khan AcademyUCLA

مبانی کامپیوتر

Python, Matlab، مکتب‌خونهPerimeter

۲) دروس تخصصی:

نام درس

ارائه کننده

فیزیک جدید

edX

مکانیک تحلیلی

Susskind (آپارات), Stanford , edX

اپتیک

Arizona State University , edX, MIT OCW

ترمودینامیک

 edX(1) (2), MIT OCW, مکتب‌خونه

مکانیک آماری

John Preskill CaltechStanford ,(2) (1)  Coursera (1) (2) , MIT OCW, مکتب‌خونه, Perimeter 

ریاضی‌فیزیک

MIT OCW(1)((2), Perimeter, مکتب‌خونه

الکترومغناطیس

,Arizona State University , مکتب‌خونه (1) (2), Stanford

مکانیک کوانتومی

مکتب‌خونه، (2)(1) Coursera, Stanford, UC Berkeley (1) (2), OxfordUC DavisPerimeter ,edX(1) (2), MIT

الکترونیک

مکتب‌خونه,  MIT OCW

فیزیک حالت‌جامد

OxfordPerimeter

۳) دروس انتخابی:

نام درس

ارائه کننده

ذرات بنیادی

Cern , Perimeter

پلاسما

edX

آب‌و‌هواشناسی

Coursera

اخترفیزیک

PerimeterCoursera , edX

کیهانشناسی

Coursera ,StanfordedX, MIT OCWPerimeter، مکتب‌خونه (۱) (۲)

نجوم مقدماتی

Coursera(1)(2) , edX, مکتب‌خونه

مبانی فلسفی مکانیک کوانتومی

مکتب‌خونه

میدان‌های کوانتومی

مکتب‌خونه(۱)(۲)(۳) , Perimeter

مکانیک سیالات/ایرودینامیک

UC Berkeley , edX, MIT OCW, مکتب‌خونه(۱)(۲)

بیوفیزیک

مکتب‌خونه

نسبیت خاص

WorldScienceU, ,StanfordedXPerimeter، مکتب‌خونه 

نسبیت عام

 ,StanfordPerimeter، مکتب‌خونه (1)(2)

دینامیک غیر خطی و‌ آشوب

 Cornell University, مکتب‌خونه

فیزیک اتمی و اپتیک

 MIT OCW (1) (2

نظریه ریسمان

 Stanford, Harvard
  • سوالی که ممکنه براتون مطرح بشه اینه که: پس واقعا دانشگاه رفتن وقت آدم رو تلف می‌کنه؟ یا مثلا نریم دانشگاه دیگه؟ یا دانشگاه رفتنمون اشتباه بود؟

جواب این سوال منفیه! دانشگاه فقط محل ارائه‌ی یک سری درس نیست! دانشگاه‌ها پایه و اساس پژوهش هستند و نه صرفا محل برگزاری یک‌سری کلاس! دانشگاه محل اجتماعات علمی و تحقیقاتی هست و به هیچ وجه نباید در دانشگاه رو بست! در ضمن شما توی دانشگاه با انسان‌های متفاوتی تعامل می‌کنید، انسان‌هایی که در بین وفور و پراکندگی منابع و راه‌های موجود برای رسیدن به سطح خوبی از علم می‌تونند شما رو راهنمایی و هدایت کنند. در حقیقت این‌که شما فقط انسان باهوشی باشید و یا اینکه مطالعه‌ی زیادی داشته باشید، کافی نیست. شاید در مقاطع اولیه تحصیل این قضیه‌ زیاد خودش رو نشون نده ولی زمانی که پای پژوهش به میون بیاد اون موقع هدایت علمی مناسب خودش رو به خوبی نشون میده.  مهم‌ترین تفاوت دانشگاه‌ها و موسسات‌ علمی تراز اول جهان با بقیه جاها در نوع کلاس‌هاشون و ساختمون‌هاشون نیست، بلکه وجود افراد به معنی واقعی متخصص هست که وظیفه‌ی هدایت علمی رو درست ایفا می‌کنند. این بحث خیلی مفصلیه، امیدوارم بشه طی چندتا پادکست توی رادیوفیزیک بهش پرداخت.

در پایان، از  همه‌ی دوستانم توی سایر رشته‌ها درخواست می‌کنم که این لیست رو در مورد رشته‌ی خودشون منتشر کنند.

  • مطالب مرتبط:
  1. آموزش آنلاین چه چیزی برای ما دارد؟!
  2. چگونه یک فیزیکدان خوب شویم؟!
  3. دانشگاه یک کتابخانه بزرگ نیست / دکتر فیروز آرش
  4. شرح دفاع «جان هنری نيومن» از ارزش بنيادي آموزش دانشگاهی: واكاوی ماموريت دانشگاه / دکتر فیروز آرش

جدید:

برسام این کار رو برای رشته «علوم کامپیوتر» انجام داده: لیسانس علوم کامپیوتر بدون پیژامه

لیست کتاب‌هایی که به شما در در زمینه آمار، احتمال و یادگیری ماشین کمک می‌کنه.

این خانم این کار رو برای ریاضی انجام داده، البته بالاتر از لیسانس: https://www.math3ma.com/blog/resources-for-intro-level-graduate-courses

«لذت درک امور» – ریچارد فاینمن

  لطفا قبل از شروع این پست، پست «ترجمه بهترین‌ آثار کوتاه‌ فاینمن!» را  بخوانید. ترجمه این مقاله کاری از گروه ترجمه دانشجویان فیزیک امیرکبیر است. شما می‌تواند این مقاله به صورت فایل pdf دانلود کنید.

ویدیوی لذت درک امور:

  • زیبایی یک گل

    زیبایی یک گل
    زیبایی یک گل (برای بزرگ‌نمایی کلیک کنید)

من دوست هنرمندی دارم، او بعضی اوقات دیدگاه هایی دارد که من زیاد با آن ها موافق نیستم. مثلا گلی را به دستش می گیرد و می گوید: « ببین چقدر زیباست » و من هم با او موافقم، در ادامه می گوید « می بینی، من به عنوان یک هنرمند زیبایی گل را می بینم. اما تو به عنوان یک دانشمند، آن را تکه تکه می کنی و از بین می بری». به نظر من او یک جور دیوانه است. اولا من معتقدم آن زیبایی را که او می گوید همه می توانند ببینند، از جمله من، شاید زیبایی شناسی من به اندازه او قوی نباشد ولی برای من هم زیبایی گل تحسین برانگیز است. و این در حالی است که من در مورد گل چیزهای بیشتری می‌بینم. من سلول ها و واکنش ها پیچیده‌ای که درون آنها اتفاق می افتد را می توانم تصور کنم و آنها هم به نوبه خود دارای زیبایی هستند. منظورم اینست که زیبایی فقط در ابعاد سانتی متری نیست و در ابعاد کوچکتر و در ساختارهای داخلی نیز زیبایی وجود دارد. همچنین در فرآیندهای داخلی این گل رنگ ها طوری آمیخته شده اند که حشرات را برای گرده افشانی جذب کنند. و این فرآیند جالبست چون این را نشان می دهد که حشره ها هم رنگ را می بینند. یک سوال پیش می آید: آیا این حس زیبایی شناسی در ساختارهای ریزتر هم وجود دارد؟ چرا زیباست؟ تمامی این سوالات گوناگون و جالب نشان می دهد که دانسته های علمی به هیجان، رموز و هیبت یک گل اضافه می کند؛ نمی توانم بفهمم که چگونه کاهش می دهد.

اجتناب از دروس علوم انسانی

من همواره آدمی تک بعدی بوده ام و فقط در جهت علمی تلاش می نمودم و در زمان جوانی تمام تمرکزم بر روی این یک بعد بود. وقت و حوصله زیادی برای یاد گرفتن چیزی که علوم انسانی نامیده می شود نداشتم، اگرچه در دانشگاه، دانشجو ناچار است تعدادی دروس علوم انسانی اخذ کند. من تمام تلاشم را می کردم که از یاد گرفتن هر چیز در این مورد و کار کردن روی آن دوری نمایم. بعد از آن، وقتی سنم بیشتر شد قدری سخت گیری من در این زمینه کاهش یافت و یاد گرفتم که در این مورد مطالعه کنم. اما راستش هنوز آدمی بیشتر یک بعدی هستم و در موارد دیگری غیر از این یک بعد (بعد علمی) چیز زیادی نمی دانم. هوش من محدود است و از آن در یک جهت خاص استفاده می کنم.

  • تیراناسوروس در پنجره

وقتی پسر بچه بودم در خانه مان یک دایره المعارف بریتانیکا داشتیم و پدرم عادت داشت مرا روی پایش بنشاند و برایم از دایره المعارف بخواند. ما با هم درباره دایناسورها حرف می زدیم . شاید هم در مورد برونتوزوروس یا تیراناسوروس رِکس صحبت می کردیم، به عنوان مثال چنین می خواند: « این موجود 25 فوت قد دارد و عرض سر آن 6 فوت است » و همین جا صحبتش را قطع می کرد و می گفت «ببینم مفهوم آن چیست. یعنی اگر آن در همین حیاط روبروی ما می ایستاد، قدش آن قدر بلند بود که می توانست سرش را از پنجره داخل کند. اما نه کاملا، چون سر او کمی عریض تر از پنجره بود و پنجره را می شکست».

هر چیزی را که با هم می خواندیم، به بهترین نحوی که بتواند به ذهنیت ما نزدیک تر باشد تصور می کردیم. این کار باعث شد یاد بگیرم که عمل کنم و هر چیزی را که می خوانم سعی کنم مفهوم و معنای آن را بفهمم. (با خنده) من عادت داشتم دایره المعارف را وقتی یک پسر بچه بودم بخوانم و آن را تعبیر کنم، خیلی هیجان انگیز و جالب بود که تصور گردد حیواناتی با این ابعاد وجود دارند. من از این که یکی از آنها از پنجره داخل شود نمی ترسیدم اما فکر کردم خیلی خیلی جالب بود که همه آنها منقرض شدند و در آن زمان هیچ کس نمی دانست چرا.

ما در نیویورک زندگی می کردیم، و معمولا تابستان ها به کوه های کَتسکیل می رفتیم. کوه های کتسکیل جایی بود که مردم در تابستان به آن جا می رفتند. آنجا مردم زیادی بودند لیکن پدرها در طول هفته برای کار کردن به نیویورك باز می گشتند و فقط آخر هفته ها دوباره به کوه می رفتند. وقتی پدرم از نیویورك می آمد مرا به میان جنگل می برد و برای من از چیزهای مختلف و جالبی که لابه‌لای جنگل اتفاق می افتاد صحبت می کرد – که بعد برایتان تعریف می کنم – اما مادرهای دیگر که این رفتار پدرم را می دیدند قطعا فکر می کردند که این کار خیلی خوبست و پدرهای دیگر هم باید پسرهایشان را برای قدم زندن به جنگل ببرند. آنها روی این موضوع کار کردند ولی در ابتدا به نتیجه‌ای نرسیدند. برای همین از پدر من خواستند که همه‌ی بچه ها را با خودش به جنگل ببرد، اما او قبول نکرد زیرا او با من یک ارتباط بخصوصی داشت و ما با هم یک امر شخصی در بین داشتیم. بالاخره بقیه پدرها مجبور شدند بچه هایشان را از هفته آینده برای قدم زدن به جنگل ببرند. دوشنبه‌ی بعد وقتی همه‌ی [پدرها] به سر کار برگشتند، بچه ها داشتند در مزرعه بازی می کردند که یکی از بچه ها به من گفت این پرنده را ببین، آیا می دانی از چه نوعی است و من گفتم: « کوچکترین نظری راجع به نوع این پرنده ندارم ». او ادامه داد «یک پرنده آوازه خوان گلو قهوه‌ای است. پدرت چیزی راجع به اون بهت نگفته؟ ». ولی اینطور نبود: پدرم به من مطالبی یاد داده بود. او در حالی که به پرنده نگاه می کرد گفت: « می دونی که این چه پرنده‌ای است؟ یک پرنده‌ی آواز خوان گلو قهوه‌ایست؛ اما به پرتقالی به آن … می گویند، به ایتالیایی …، به چینی …، به ژاپنی …، و غیره. و حالا تو در هر زبانی که بخواهی اسم آن پرنده را می دانی اما مطلقا هیچ چیز در مورد این پرنده نمی دانی. تو فقط فهمیدی که آدم ها در مکان‌های مختلف آن را چه نامیده اند». و سپس از من خواست که با هم به تماشای پرنده ها بنشینیم.

او به من یاد داده بود که به هر چیزی توجه کنم. یک روز وقتی که داشتم با قطار اسباب بازیم بازی می کردم، (از همان قطارهایی که بچه ها آن را روی ریل می کشند.) یادم می آید که داخل واگن یک توپ بود، وقتی که واگن را می کشیدم چیزی در مورد حرکت توپ فهمیدم، به پیش پدرم رفتم و به او گفتم: « نگاه کن بابا من یه چیزی رو فهمیدم. وقتی که واگنرا می کشم توپ به عقب واگن حرکت می کند و وقتی ناگهان آن را متوقف می کنم توپ به سمت جلو حرکت می کند.» از او پرسیدم که چرا این اتفاق می افتد او پاسخ داد که دلیلش را هیچکس نمی داند. و ادامه داد: « قانون کلی اینه که چیزهایی که در حال حرکت اند سعی می کنند به حرکت خودشان ادامه بدهند و چیزهایی که ساکن اند تمایل دارند که ساکن باقی بمانند مگر اینکه شما آنها را هل بدهید که این تمایل اینرسی نام دارد و هیچکس نمی داند که چرا وجود دارد ». حالا من به درك عمیقی رسیده بودم چون پدرم فقط یک اسم به من یاد نداد، او تفاوت بین دانستن اسم یک چیز و خود آن را می دانست. چیزی که من هم خیلی زود یاد گرفتم. پدرم ادامه داد: « اگر دقیق نگاه کنی می فهمی که این توپ نیست که به عقب واگن می رود بلکه این عقب واگن است که تو داری بر خلاف حرکت توپ می کشی. یعنی توپ می ایستد یا حتی به خاطر اصطکاك به جلو حرکت می کند و به عقب نمی رود ». من به طرف واگن کوچکم دویدم و دوباره توپ را روی واگن گذاشتم و آن را از زیرش کشیدم در حالی که از کنار به آن نگاه می کردم دیدم که پدرم درست گفته است. وقتی که واگن را به جلو می کشیدم توپ اصلا به عقب نمی رفت. توپ نسبت به واگن به عقب می رفت ولی نسبت به بیننده کمی به جلو می رفت و در واقع عقب واگن بود که به آن می رسید. با این روش بود که من توسط پدرم تعلیم دیدم، با این نوع مثال‌ها و فقط با بحث های جالب و دوست داشتنی، بدون هرگونه فشار و اجباری من مورد آموزش پدرم قرار گرفتم.

انتشار پادکست۱/۰ «فیزیک پایه: سهل ممتنع»

بی‌نهایت‌ها- نگاره آزاد از ویکی پدیا
بی‌نهایت‌ها- نگاره آزاد از ویکی پدیا

پادکست شماره ۱/۰،«فیزیک پایه – سهل ممتنع»،  گفت‌وگوی صمیمی بین عباس کریمی و امید مومن‌زاده در مورد مفاهیم ابتدایی فیزیک پایه است . مفاهیمی که به وفور از آن‌ها استفاده می‌کنیم و ظاهرا بسیار بدیهی  به نظر می‌رسند؛ در صورتی که این‌گونه نیست! مفاهیمی مثل جرم لختی، انرژی، فضا، بی‌نهایت و … . همچنین در این پادکست عباس کریمی به این پرسش پاسخ می‌دهد که آیا قوانین فیزیک کشف و یا اختراع شده‌اند و پس از آن امید مومن‌زاده به این سوال در مورد ریاضیات می‌پردازد.

 
برای کمی سرگرمی بیشتر، از این به بعد شماره‌ی پادکست‌ها به این صورت خواهد بود که ارقام ثابت کاهش یافته پلانک ،با افزایش دقت، شماره برنامه می‌شوند. در هر پادکست جدید یک رقم بامعنی به رقم قبلی اضافه خواهد شد. این شماره ۱/۰ ، شماره بعد ۱/۰۵، شماره بعد از آن ۱/۰۵۴ و …

دانلود با کیفیت 320 kbps:
دانلود با کیفیت 128 kbps:

این پادکست یک برداشت کاملا آزاد از یکی از برنامه‌های World Science U است.  آهنگ پخش شده در ابتدا و انتهای این پادکست برگفته شده از وب سایت symphonyofscience.com هستند. شما می‌توانیدسایر موزیک‌های پخش شده در این پادکست را از سایت jamendo.com رایگان و آزاد تهیه کنید.

با تشکر از همه‌ی شما. امیدواریم که از شنیدن این پادکست لذت ببرید 🙂

ترجمه بهترین‌ آثار کوتاه‌ فاینمن!

A collection of short works from Richard Feynman

تیم‌ترجمه سیتپور شروع به ترجمه بهترین آثار کوتاه فاینمن نموده است.

کتاب The Pleasure Of Finding Things Out مجموعه‌ای از سخنرانی‌ها، مصاحبه‌ها و مقالات چاپ شده فاینمن است. سعی ما بر ترجمه همه‌ی آثار موجود در این کتاب می‌باشد. در کتاب نام‌برده ۱۳ مطلب موجود است که تاکنون برخی از آن‌ها ترجمه شده‌اند، از جمله: «علم چیست؟» و «فضای زیادی در سطوح پایین وجود دارد!»

درصورت تمایل این کتاب را دانلود کنید و عنوان مطلبی که علاقمند به ترجمه آن هستید را در قسمت نظرات بنویسید و یا به نشانی abbascarimi در gmail ایمیل کنید!

دانلود کتاب The Pleasure Of Finding Things Out

تا کنون مقاله‌های زیر توسط اعضای تیم ترجمه، ترجمه شده‌اند، در صورت تمایل مقاله‌هایی غیر از این‌موارد انتخاب کنید:

The Pleasure of Finding Things Out (1

2) Cargo Cult Science

(این لیست آپدیت می‌شود)

 

ما به یاد کسانی که راه را هموار ساختند هستیم و به آنها خواهیم پیوست!

منتظر شما هستیم

تیم ترجمه سیتپور

انتشار پادکست شماره صفر، «فیزیک به چه دردی می‌خوره؟»

سلام
سال نو مبارک
بالاخره پادکست اول آماده شد. لطف کنید گوش کنید و نظرتون رو بهمون بگید. هرچقدر به جزئیات بیشتری اشاره کنید صددرصد بهتر میشه رادیوفیزیک.
ممنون که همراه هستید 🙂
پادکست شماره صفر، «فیزیک به چه دردی می‌خوره؟»
در این پادکست  عباس کریمی و امید مومن‌زاده به بررسی تاثیر فیزیک بر زندگی روزمره و فناوری‌های آینده پرداخته‌اند.
  • لینک Sound Cloud: دانلود
  • لینک Dropbox: دانلود
  • لینک Google Drive: دانلود
  • دانلود مستقیم از سایت رادیو فیزیک (ترجیحا از گزینه‌های بالا استفاده کنید): دانلود

ترجمه: «مکانیک کوانتومی وآشوب»

مکانیک نیوتونی پایه‌ی تمام فیزیک است و علم جدید برپایه ایده‌های مکانیک نیوتونی بنا شده است. اعتقاد بر این بوده که اگر برهم‌کنش بین عناصر تشکیل‌دهنده‌ی یک سیستم را بدانیم، با استفاده از قوانین نیوتون می‌توان حرکت سیستم را پیش‌بینی کرد. ایده‌ی دنیایی که مانند یک ساعت، کوک شده  و همه چیز بر اساس قوانین فیزیک پیش می‌رود برای سیستم‌های مکانیکی ساده درست است ولی نه لزوما درست. حدود سال ۱۹۰۰ این موضوع فقط توسط دانشمند بزرگ فرانسوی، آنری پوانکاره، درک شده بود. پوانکاره به این پی‌برد که سیستم‌هایی وجود دارند که غیر قابل پیش‌بینی هستند و نمی‌توان آنها را به صورت ریاضی حل‌ کرد.

آنری پوانکاره (Henri Poincaré )
آنری پوانکاره (Henri Poincaré )

اگر شما سعی کنید آینده را به صورت ریاضیاتی پیش‌بینی کنید خواهید دید که سیستم به صورت گستره رفتار خواهد کرد و منظور از گسترده این است که اگر شما شرایط اولیه را به مقدار بسیار بسیار کمی تغییر دهید، پاسخ کاملا متفاوتی از سیستم خواهید دید. (برای سیستم‌های خوش‌رفتار اگر شما شرایط اولیه را به مقدار کمی تغییر دهید، رفتار سیستم هم به مقدار کمی تغییر می‌کند). کشف پوانکاره تا دهه ۱۹۷۰ رها شد تا اینکه یک ریاضی‌دان آب و هوا شناس،به نام ادوارد لورنتس در MIT کشف کرد که معادلات عددی وجود دارند که اتمسفر را توصیف می‌کنند به طوری که نمی‌توان رفتار سیستم را پیش‌بینی کرد. او به جالب‌ترین حالت ممکن به این موضوع پی‌برد. لورنتس از یک کامپیوتر به نسبت ساده برای حل انتگرال یک معادله‌ی ساده استفاده می‌کرد. او متوجه شد هر بار که مسئله را حل می‌کند به جواب‌های متفاوتی می‌رسد و علت آن این بود که کامپیوترها شرایط اولیه را به مقدار بسیار کمی در شروع هر حل تغییر می‌دهند، کامپیوترها کاملا(بینهایت) دقیق نیستند و اگر شما واقعا دقیق نباشید، پاسخ‌های متفاوتی دریافت خواهید کرد! او این موضوع را بررسی کرد و ما آشوب را کشف کردیم و برای آن اسم شگفت‌انگیز «اثر پروانه‌ای» را انتخاب کردیم. به این خاطر که اگر پروانه‌ای در برزیل در حال پرزدن باشد می‌تواند مسبب گردبادی در امریکای شمالی شود. اثر پروانه‌ای در حقیقت، کشف مجدد آشوب بود که تبدیل به موضوع بسیار مهمی در دینامیک شد و مطالعه‌ی سیستم‌های دینامیکی را متحول ساخت، به طوری که موضوع کتاب پرفروشی به نام آشوب در دهه‌ی ۸۰ شد.

50_no_mere_coincidence
اثر پروانه‌ای

خب این موضوع چه دخلی به فیزیک اتمی دارد؟ ربط زیادی ندارد! به خاطر اینکه فیزیک اتمی موضوع بررسی رفتار میکروسکوپیک اتم‌هاست و نه سیستم آب و هوای جهانی. با این وجود این سوال را برمی‌انگیزد که سیستم‌های اتمی چگونه رفتار می‌کنند که رفتار کلاسیکی سیستم، یک رفتار آشوب‌ناک می‌شود؟! می‌دانیم برای سیستم‌های اتمی که عددهای کوانتومی بالایی دارند، اصل هم‌خوانی بور برقرار است و رفتاری که سیستم از خود بروز می‌دهند مانند یک سیستم کلاسیک خواهد بود. او از این اصل برای توسعه مدل اتم هیدروژن درسال ۱۹۱۳ استفاده کرد، بنابراین یک نظریه‌ی قدرتمند است. اگر شما یک اتم را در نظر بگیرید و الکترون آن را تا ترازهای بالایی برانگیخته کنید آنگاه از قوانین ساده‌ی مکانیک کوانتومی پیروی می‌کند که درست مانند چیزی است که شما از فیزیک کلاسیک انتظار داشتید. برای مثال دوره‌تناوب مدارها با استفاده از قوانین کپلر به‌دست می‌آیند. ما به این سیستم‌ها، سیستم‌های نیمه‌کلاسیک می‌گوییم. زمانی که یک پروتون، یک الکترون را به سمت خود جذب می‌کند و الکترون بسیار دورتر از آن است به گونه‌ای که تفاوت حرکت بین حالت‌های کوانتومی بسیاربسیار کوچک باشد، به آن رژیم شبه‌کلاسیک می‌گوییم. اتم به خودی خود، هیچ‌گاه آشوب‌ناک نیست ولی اگر یک میدان مغناطیسی و یا الکتریکی به آن اعمال کنیم، آنگاه حرکت کلاسیک آن آشوب‌ناک می‌شود. سوال این است که رفتار کوانتومی این سیستم چیست!؟ سوال از‌ آنجا مطرح می‌شود که آشوب، حرکتی است که در آن تغییرات بسیار بسیار کوچک در شرایط اولیه،  رفتار سیستم را به طور کامل عوض می‌کند. اما از آنجا که مکانیک کوانتومی شرایط را تغییر می‌دهد، نمی‌توان تغییرات بسیاربسیارکوچک ایجاد کرد. شما نمی‌توانید مکان و سرعت را به صورت بسیاربسیار کوچک تغییر دهید از آنجا که اصل عدم قطعیت بر آن‌ها حاکم است. پس شما انتظار رفتار متفاوت دیگری را می‌کشید. بنابراین موضوع مورد علاقه‌ برای بسیاری از مردم در دهه‌ ۸۰ شد. در آن موقع من در حال تحقیق بر روی اتم ریدبرگ بودم و این سوال برایمان پیش آمده بود، برای همین ما شروع به آزمایش کردیم. هنگامی که آزمایشی انجام می‌دهیم، می‌توانیم اتم‌ها را در رژیم‌هایی مطالعه کنیم که مکانیک کوانتومی به درستی برای آن‌ها برقرار است و پس از آن به رژیم‌هایی برویم که رفتار کلاسیکی سیستم در آن‌ها آشوب‌ناک است. برای همین ما کاملا گیج شده بودیم که قرار است چه اتفاقی با هم رخ دهد؟! مکانیک کوانتومی که به کمک آن ترازهای انرژی بسیار خوب مشخص شده بودند، دیگر در ناحیه‌ی آشوبناک ناپدید می‌شد! هنگامی که برای اولین بار به آن نگاه کردیم بسیار حیرت‌زده شدیم، چون که تمام ترازهای انرژی کماکان در آنجا وجود داشت. شاید الان که به آن نگاه می‌کنیم یک پندار ساده‌ به نظر برسد ولی ما واقعا گیج شده بودیم. چیزی که ما به‌دست آورده بودیم الگوهای ترازهای انرژی بود که بسیار پیچیده و به نظر بی‌نظم و بی‌نظم‌تر می‌شدند. بنابراین می‌توان عمیقا وارد این رژیم از آشوب کلاسیک شده و کماکان ترازهای انرژی را دید، اما به شکل اسپاگتی! با این وجود، پی‌برده شد که حتی درون این رفتار شبیه اسپاگتی، نظم وجود دارد و نظم‌ توجیه‌کننده‌ی این موضوع است که حتی در حضور آشوب، مدارهای متناوب می‌توانند وجود داشته باشند. عده‌ی زیادی از نظریه‌پردازان به صورت نظری به این موضوع پی‌بردند و پس از آن آزمایش‌هایی انجام شد و ما متوجه شدیم که آن‌ها وجود دارند. در حقیقت پوانکاره این موضوع را مطرح کرده بود که حتی در شرایطی که سیستم‌ها کاملا آشوبناک هستند، حرکات متناوبی برای سیستم وجود دارد که مدام اتفاق می‌افتند. بنابراین ما به این نتیجه رسیدم که قطعا در سیستم‌های آشوبناک می‌توان این حرکت‌های متناوب را دید.

آشوب کوانتومی
آشوب کوانتومی

این ایده‌ی جالبی است، از آنجا که اگر بخواهید آن مدارها (ترازها) را با استفاده از روش‌های کلاسیک به دست آورید، کار به مراتب سختی خواهدبود، چون که سیستم‌های آشوب‌ناک می‌توانند به قدری ناپایدار باشند که اگر ،فقط به صورت عددی، بخواهید مدارهای متناوب مشخصی را از بین‌ آن‌ها پیدا کنید کار غیرممکنی خواهد بود، فقط به این خاطر که آشوب‌ناک است. ولی این‌ کار را طبیعت برای شما انجام می‌دهد! یعنی طبیعت مانند یک کامپیوتر کوانتومی عجیب و غریب رفتار می‌کند، انگار طبیعت یک سیستم کوانتومی است که مدارهای متناوب کلاسیک را در منطقه آشوب محاسبه می‌کند. ما چیزهای بسیار زیادی از این مدارها یاد گرفتیم، به عنوان مثال با استفاده از روش‌های مکانیک کوانتومی می‌توانیم رفتار کلاسیک سیستم را پیش‌بینی کنیم و نظم موجود در حرکت‌ را پیدا کنیم که در غیر این صورت امکان آن وجود ندارد. پس با این تعبیر، مکانیک کوانتومی از شر آشوب نجات یافته است و به ما چیزهایی از یک سیستم آشوب‌ناک می‌گوید. چیزی که واقعا از سیستم‌های آشوب‌ناک می‌دانیم و بسیار جالب است، وجود این مدارهاست. بنابراین ما در تلاش هستیم که بفهمیم مکانیک کوانتومی چه چیزهایی به ما می‌گوید ‌و فهمیده‌ایم که چیزهای زیادی به ما می‌گوید! همان‌گونه که ما و دیگران مطالعاتمان را معطوف به آشوب کوانتومی کردیم، بیشتر و بیشتر گیج می‌شدیم که به دنبال چه چیزی هستم؟!‌ سوالی که قرار است به آن جواب دهیم کدام‌ است؟! یک سوال این است که مشخصه‌های یک سیستم‌ کوانتومی که بازتاب کننده‌ی رفتار کلاسیک یک سیستم آشوبناک است چیست؟! ما هم اکنون یک جواب برای این سوال داریم. سوال عمیق‌تر این است که اصولا مکانیک کوانتومی جایی برای آشوب ندارد، به هر سیستم کوانتومی که نگاه کنید گونه‌ای از یک سیستم محدود در جعبه است و اگر به جواب‌های آن بنگرید، همه‌ی آنها متناوب هستند. شما یک برهم‌نهی از تابع‌موج‌های مختلفی که هر کدام با یک فرکانسی در حال نوسان هستند در نظر می‌گیرید، مهم نیست که چه تعداد، نتیجه‌ی نهایی یک حرکت متناوب است. اما در سیستم‌های آشوبناک، معمولا خبری از حرکت‌های متناوب نیست، شاید حالت‌های خاصی وجود داشته باشد، اما اغلب حرکت‌ها این گونه نیستند. بنابراین این‌گونه به نظر می‌رسد که مکانیک کوانتومی در توجیه آشوب کلاسیک ناتوان است. ولی ما می‌دانیم که مکانیک کوانتومی،‌ مکانیک کلاسیک را در برگرفته است. ما دوست داریم که بر این اعتقاد بمانیم که باید راهی وجود داشته باشد به طوری که هر حرکت کلاسیکی که می‌بینیم را توصیف کنیم. ما به معمایی رسیده‌ایم که به نظر می‌رسد، علی‌الاصول به خوبی طرح نشده است!  به هرحال، برای داشتن یک توضیح شفاف برای آن در حال تلاش هستیم.

یکی از پیشتازان این زمینه،‌ مایکل بری، فیزیک‌دان برجسته‌ی انگلیسی، اصطلاح «Quantum Chaology» به جای «آشوب کوانتومی» معرفی کرد و من فکر می‌کنم که اصطلاح خوبی است و به معنی آن دسته از پدیده‌های کوانتومی است که با حرکت کلاسیک مرتبط هستند ولی به خودی خود آشوب نیستند. با این وجود، هنوز مردم با اصطلاح «آشوب کوانتومی» مشکل دارند و نمی‌دانند که به چه معناست!

دنیل کلپنر

استاد فیزیک دانشگاه اِم آی تی و مدیر مشترک مرکز تحقیقاتی اتم‌های فوق سرد ِ اِم آی تی – هاروارد