در قسمتهای قبل در مورد فرکتالها و ویژگیهاشون نوشتم. این قسمت و قسمت بعد در مورد مجموعهای از اعداد که اشکال فرکتالی میسازند هست.
به عنوان مقدمه، تابع رو در نظر بگیرید. اگر به عنوان یک نقطهی شروع x=۲ رو به تابع بدیم مقدار تابع میشه ۲ به توان ۲ یعنی ۴. حالا اگر باز این ۴ رو به تابع بدیم، جواب ۱۶ میشه و اگر این روند رو ادامه بدیم به عددهای بزرگتر میرسیم. همین طور اگر از نقطهی x=-۳ شروع کنیم، به ۹ و بعد از اون به ۸۱ و مجددا به عددهای بزرگتری میرسیم.
هر دوی این نقاط بعد از تکرارهای پی در پی به بینهایت نزدیک میشند. اما اگر این بار یک نقطه از بازهی [۱،۱-] انتخاب کنیم چی؟ مثلا اگر ۰/۵ رو انتخاب کنیم به توان دو که برسه میشه ۲۵/. بعدش ۶۲۵./. و همین طور عددهای بعدی کوچیک و کوچیکتر میشند و به صفر میل کنند.
در حقیقیت هر عددی که انتخاب کنیم در نهایت (پس از تکرارهای پی در پی) سرانجام و عاقبتش دو حالت داره؛ یا خیلی رشد میکنه و به یک حد بی کران میرسه یا اینکه در آخر به یک مقدار ثابت همگرا میشه که برای این تابع اعداد ۱ و ۱- به ۱ همگرا میشند و همهی اعداد حقیقی بین ۱- و ۱ به صفر. اعداد خارج این بازه هم که اصلا همگرا نمیشند!
خب بعد از این مقدمه، به یک تعریف میرسیم: «به مجموعهای از شرایط اولیه که پس از تکرارهای پیدرپی توسط یک تابع به بینهایت میل نمیکنند، مجموعهی ژولیای آن تابع میگویند.» مثلا برای تابعشرایط اولیه (اعداد) عضو بازهی [۱،۱-] پس از تکرارهای پیدرپی به بینهایت نمیرسند ولی برای خارج از این بازه این طور نیست و همون جوری که دیدید بعد از تکرارهای پیدرپی به بینهایت میرسند. در حقیقت به مجموعه [۱،۱-]=S یک «مجموعهی توپور ژولیا» میگند و منظور از مجموعه ژولیا مرز بین دو مجموعه است؛مجموعه شرایط اولیهای که به بینهایت میرسند و مجموعه شرایط اولیهای که به بینهایت نمیرسند! یعنی برای تابع مجموعه ژولیا {J ={-1,1 است که شامل دو عدد ۱+ و ۱- میباشد! به عبارت دیگه اگر روی محور xها بخواییم مشخص کنیم فقط دو تا نقطه به عنوان مجموعهی ژولیا تابع مشخص میشه؛ x=1 و x= -1!
خب تا اینجا زیاد جذاب نبود و فقط یک تعریف رو مطرح کردیم! حالا برای ایجاد جذابیت بیایید و وارد اعداد موهومی بشیم. تفاوت اعداد حقیقی و موهومی در اینه که اعداد حقیقی روی یک خط هستند ولی اعداد موهومی روی یک صفحه قرار میگیرند. هر عدد موهومی به صورت z=a+ib نوشته میشه که a, b هر دو اعداد حقیقی و i واحد موهومی ساز هست جوری که طبق تعریف: i2 = −1 ! اگر با این دسته از اعداد هنوز آشنایی ندارید، سخت نگیرید، ایدهی آسونیه، میتونید نگاه کنید به صفحه ویکیپدیا یا اینکه اگر اشتیاق بیشتری به یادگیری دارید بهتون پیشنهاد میکنم کتاب «متغیرهای موهومی و کاربردها» نوشتهی جیمز براون و روئل چرچیل رو یه نگاهی بندازید! الان همون تابع قبلی رو در فضای موهومی مینویسیم:
در مورد این تابع، مجموعهی ژولیا، مجموعه نقاطی هست که روی دایرهای به شعاع ۱ و به مرکز مبدا مختصات قرار میگیرند. یعنی مجموعه نقاط روی دایره و درون دایره r=1 مجموعهی توپور ژولیا رو میسازند. این به خاطر اینه که اعداد موهومی روی صفحه مشخص میشند. (شما این تعبیر رو با نوشتن صورت قطبی اعداد موهومی بهترین میتونید ببینید؛ یادتون باشه که ما دنبال اعدادی هستیم که (z) عضو بازهی [۱،۱-] باشند تا بعد از تکرارهای پیدرپی، اعداد حاصل از به توان ۲ رسوندن به بینهایت میل نکنند! صرفا جهت یادآوری عرض کنم که برای به توان رسوندن یک عدد موهومی z=a+ib مثل به توان رسوندن چند جملهای ها عمل میکنیم ولی به این نکته توجه میکنیم که طبق تعریف i2 = −1 !)
خب یکمی جالبتر شد، از دو نقطهی x=1 و x= -1 توی قسمت قبل این دفعه به یک دایره رسیدیم در فضای موهومی. برای جذابیت بیشتر بیایید و این دفعه تابع رو تغییر بدیم و از این تابع استفاده کنیم و ببینیم که چی میشه! یعنی اون نقاطی رو پیدا کنیم که بعد از تکرارهای متوالی توسط این تابع به بینهایت میل نکنند. راستش این دفعه به سادگی دفعهی قبل نیست که بتونیم سریع کل اون اعداد رو حدس بزنیم و مثلا بگیم که ما دنبال اعدادی هستیم که (z) عضو بازهی [۱،۱-] باشند. خب بیایید و چند تا عدد موهومی رو تست کنیم، روش آزمون و خطا؛ چندتا عدد راحت مثل 0 و i و 1+i و یک عدد یکمی ناراحت ( 😀 ) مثل 0.8 + 0.2i
میبینیم که صفر به طور متناوب به ۱- و صفر میرسه ولی در مورد بقیه اعداد ما، این طوری نیست و مثلا در مورد 1+i همین طور زیاد و زیاد تر میشه.
خب بقیه اعداد رو باید همین جوری با آزمون و خطا پیدا کرد راستش و خب این قدری رنج آوره! اشکال نداره ما خودمون این کارو انجام نمیدیم و میذاریم کامپیوتر بقیه اعداد رو پیدا کنه! من تصویری از نقاطی که مشخص شده رو براتون میذارم تا ببینید که این دفعه شکل دیگه دایره نمیشه و یه شکل عجیب درست میشه! فکر نمیکنم که این شکل رو میشد به این راحتیها حدس زد! برای بهتر دیده شدن تصویر، رزولوشنش رو میشه بیشتر کرد،یعنی تعداد نقاط رو بیشتری رو امتحان کرد:
«این یک شکل خودمتشابه هست!»
اجازه بدید تا یک قسمت از شکل که مشخص کردم رو بزرگترش کنم؛ مثل اینکه سر و کلهی فرکتال ها دوباره پیدا شد!
از حالا به بعد هر تابعی که داشته باشیم رو میتونیم مجموعهی ژولیا مربوط به اون رو پیدا کنیم.بین توابع، توابعی که به صورت چندجملهای های مربعی هستند بیشتر معروف هستند!
$$ f(z)=z^2 +c ,$$ c:مقدار ثابت
حتما به صفحهی ویکیپدیا مجموعهی ژولیا سر بزنید و شکلهای جالبی که توسط توابع مختلف ساخته شده رو ببینید. علت استفاده از رنگ هم اینه: بسته به این که نقاط با چه آهنگی رشد میکنند به اونها یک رنگ خاص اختصاص میدند، ممکنه یک عدد بعد از صد بار تکرار بیشتر از یک میلیون بشه و یک عدد بعد از هزار بار تکرار، اینها باید با هم یک فرقی به هر حال داشته باشند دیگه! به عنوان نمونه من چند تا از تصاویر رو میذارم:
«حالا، اینجا چیز دیگری است که نسبتا جالب است. یکی از مخرب ترین رویدادها در تاریخ ریاضیات، که توسط بسیاری از مردم درک نشده، در حدود ۱۳۰ سال پیش رخ داده است، ۱۴۵سال پیش. ریاضیدانان شروع به خلق اشکالی که وجود نداشتند کردند. ریاضیدانان شروع به خودستایی کردند به حد مطلقا شگفت انگیزی که انسان بتواند چیزهایی را اختراع کند که طبیعت نمی دانست. به طور خاص، توانست چیزهایی اختراع کند مانند یک منحنی که صفحه را پر می کند. یک منحنی، منحنی است، یک صفحه، صفحه است، و این دو ترکیب نخواهند شد. خب، آنها ترکیب می شوند! مردی به نام پیانوچنین منحنی هایی تعریف کرد، و آن موضوع فوق العاده مورد علاقه واقع شد. آن موضوع بسیار مهم، اما بیشتر جالب توجه بود به دلیل یک نوع شکاف، یک جدایی بین ریاضیات آمده از واقعیت از یک طرف، و از طرف دیگر ریاضیات جدیدی که از ذهن ناب انسان آمده است. خب، من بسیار متاسف بودم برای تذکر اینکه ذهن ناب انسان در حقیقت، آنچه را برای یک مدت طولانی دیده شده بود بالاخره دیده است! و بنابراین من اینجا چیزی را معرفی می کنم، مجموعه ای از جریان های یک منحنی صفحه پر کن…»بنوآ مندلبرو (پدر هندسهی فرکتالی) ، سخنرانی تد ۲۰۱۰
توی پست دوم فرکتالها در مورد بعد (یا ناهمواری) غیرصحیح فرکتالها توضیح دادم. مثلا دیدیم که بعد برفدانهای که ساختیم ۱/۴۶ و بعد مثلث سیرپینسکی ۱/۵۸ به دست اومد. حالا فرض کنید که بعد از محاسبه بعد یک فرکتال، اون عدد دقیقا «۲» به دست بیاد! به نظرتون این چه معنی میده؟ اگر این اتفاق بیفته اون موقع فرکتال شما کل صفحه رو پر میکنه! یعنی به ازای هر نقطه از صفحه یک نقطه از فرکتال وجود داره. برای توضیح بیشتر اجازه بدید که وارد موضوع «خمهای فضا (صفحه) پر کن بشم»:
خمهای فضا پرکن:
خیلی از اوقات نیازه که مختصات فلان نقطه در فضا رو بدونیم. توی این جور مواقع،بسته به نوع مسئله، از دستگاه مختصاتی استفاده میکنیم که به کمک اون راحتتر بتونیم مختصات نقاط دلخواه رو مشخص کنیم. به عنوان مثال همهی ما از دستگاه مختصات دکارتی (کارتزی) توی دبیرستان استفاده میکردم. دستگاهی که برای مشخص کردن هر نقطه از فضا کافی بود فاصلهی فضایی اون نقطه از مبدا (همون x, y, z) رو بدونیم. یا مثلا همهی دانشجوهای فیزیک میدونند (یا باید بدونند!) زمانی که توی فضای ۳ بعدی با مسئلهی نیروی مرکزگرا مواجه میشند بهتره که از دستگاه مختصات کروی استفاده کنند. توی دستگاه کروی از دو تا زاویه و یک فاصلهی شعاعی استفاده میشه تا مختصات هر نقطه از فضا مشخص بشه. شاید رفتن از دستگاه دکارتی به کروی مسئله رو راحتتر کنه ولی چیزی که فرق نمیکنه اینه که برای توصیف هر نقطه در فضا چه در دستگاه دکارتی و چه در فضای کروی به ۳ تا پارامتر نیاز داریم و تعداد پارامترها تغییر نمیکنه! (اگر الان دارید به مختصات تعمیم یافته فکر میکنید اولا آفرین، ثانیا لطفا فعلا فراموشش کنید چون من میخوام یه چیز دیگه بگم!) حالا فرض کنید که یک خم با ابتدا و انتهای مشخص دارید. خم یک موجود یک بعدیه که توی یک فضای ۲ بعدی و یا بیشتر جا میشه و زیر مجموعهای از اون فضاست. شما میتونید خمتون رو تقسیم بندی کنید (مثل خط کش). اگر نقطهی ابتدایی خمتون رو مبدا در نظر بگیرید (انتخاب این نقطه اختیاری، هر نقطهی دیگهای رو میتونید در نظر بگیرید)، اون موقع مختصات (موقعیت) هر نقطهای از خم رو میتونید با استفاده از مبدا و تقسیم بندی که انجام دادید، داشته باشید! مثلا در فاصله ۳ سانتی متری نقطهی A و در فاصلهی ۲.۳۴ سانتی متری نقطهی B قرار داره. این نقاط یکتا هستند، به عبارت دیگه توی یک فاصلهی مشخص فقط یک نقطه پیدا
میشه! کاری که انجام دادیم این بوده که هر نقطه از خم رو فقط با «یک» پارامتر مشخص کردیم که خیلی کار خوبیه ولی متاسفانه یه مشکلی هست و اون اینه که ما با این کار فقط مختصات نقاطی که روی خم مورد نظر ما هستند رو تونستیم با یک پارامتر مشخص کنیم و برای بیان مختصات سایر نقاط فضا مجددا به پارامترهای بیشتری نیاز داریم( 🙁 ).
اینجا بود که شخصی به نام پیانو (Giuseppe Peano) تصمیم گرفت که خمی بسازه که کل فضا رو پر کنه، اون موقع میشه مختصات هر نقطه از فضا رو فقط با یک پارامتر مشخص کرد و این یعنی عالی!
راستش پیانو این ایده رو از کانتور ریاضیدان بزرگ آلمانی گرفته بود. چون که کانتور قبلا نشون داده بود که: «تعداد (بیشمار) نقاط در یک بازهی بسته برابر با تعداد تقاط در هر فضا با بعد محدوده». این جوری شد که خمهای فضا پر کن توسط پیانو ساخته شد و به خاطر همین به خمهای که فضاهای ۲ بعدی (صفحه) رو پر میکنند معمولا میگند خم پیانو. یک سال بعد از مطرح کردن خمهای فضا پر کن توسط پیانو، دیوید هیلبرت
خم هیلبرت، یک خم صفحه پرکن
خمهای فضا پرکن مختلفی رو ارائه داد که فکر کنم این موضوع با کار هیلبرت کامل شد تقریبا! نکته این بود که ریاضیدانها فکر میکردند چیزهایی ساختند که واقعا توی دنیا واقعی وجود ندارند و این از ذهن ناب بشر اومده. ولی همین جوری که مندلبرو گفت (ابتدای پست) ریاضیدانها فقط چیزی رو دیده بودند که برای مدتهای طولانی در طبیعت دیده شده بود! به این صفحه نگاه کنید، فرکتالهای مختلفی با بعد (ناهمواری)های مختلفی رو شامل میشه، از جمله اونهایی که بعدشون صحیح و فضا پر کن هستند!
فرکتالهای تصادفی:
مراحل ساخت مثلث سرپینسکی تصادفی
به برفدانهی کخ برگردیم در قسمت اول. مطابق شکل چند مرحله از ساخت این برفدانه رو میبینیم. شیوه ساخت این فرکتال ابتدایی آسونه و قاعده هم داره! یعنی اینکه هر بلایی که سر یک ضلع بیاد سر بقیه اضلاع هم میاد و از اون مهمتر هر مرحلهای که برای ساخت پیش میریم از «یک» قاعده فقط پیروی میکنیم (اینکه هر پارهخط به ۳ قسمت مساوی تقسیم میشه، قسمت وسط دور ریخته میشه و دو قسمت هم اندازه با یکی از اون سه قسمت به شکل اضافه میشه.) در حقیقت ما با یک فرایند کاملا منظم، یک شکل عجیب (در نگاه اول!) رو میسازیم. در قسمت اول محیط و مساحت این فرکتال به راحتی حساب شد و همین طور با استفاده از رابطهای که توی قسمت دوم برای محاسبه بعد (ناهمواری) ارائه شد، بعد این فرکتال log۴/log۳ = ۱/۲۶ به دست میاد! پس این یک فرکتال منظم هست. حالا اگر اینقدر منظم پیش نریم چه اتفاقی میافته؟ برای مثال اگر در مرحلهی اول که دو قسمت برابر رو اضافه میکنیم و یک مثلث جدید میسازیم سر مثلث رو به بالا باشهو برای مرحلهی بعد سرمثلث ها رو به پایین باشه و همین جوری یک در میون عوض بشه اون موقع شکل از این نظم خارج میشه و دیگه توی هر مرحله با یک قاعده سر و کار نداریم. میشه باز بی نظمی رو بیشتر کرد. این دفعه هر مرحله رو که میخوایم انجام بدیم سکه بندازیم مثلا، اگر شیر اومد سر مثلث رو به بالا باشه و اگر خط اومد سر مثلث رو به پایین. با این کار (که هر مرحله مطابق با یک قاعدهی تصادفی ما فرکتال رو میسازیم) در نهایت به یک فرکتال غیر ابتدایی میرسیم که دیگه واقعا ساده نیست، اسم این فرکتال، فرکتال تصادفیه!
نمونههایی از برفدانهی تصادفی کخ
فرکتال های تصادفی بیشتر به شکلهایی که توی طبیعت هستند نزدیکند تا فرکتالهای غیر تصادفی. ولی خب یک سری پیچیدگی ها به این دسته از فرکتالها به خاطر تصادفی بودنشون اضافه میشه که بررسی کامل اونها از حوصله شما و سواد من احتمالا خارجه و نیاز به نظریههای پیشرفته احتمالات داره. با این وجود فقط به چند نکته دربارهی این دسته از فرکتالها اشاره میکنم؛
اول اینکه ایندسته از فرکتال ها دیگه دقیقا خودمتشابه و قطعه های کوچیکتر دقیقا مثل کل شکل نیستند! با این وجود شباهت زیادی هنوز وجود داره. به همین خاطر میگند فرکتالهای تصادفی، به طور آماری خودمتشابه هستند. حقیقت هم اینه که واقعا طبیعت رو باید آماری بررسی کرد، خوشبختانه یا متاسفانه!
از طرف دیگه به خاطر اینکه فرکتالهای تصادفی به طور آماری خودمتشابه هستند دیگه محاسبهی بعد (ناهمواری) برای این دسته از فرکتالها به این راحتی ها نیست! بعد یک فرکتال غیر تصادفی با بعد همون فرکتال ولی با ساختار تصادفی ممکنه برابر یا نابرابر باشه.
مثلا برفدانهی کخ و برفدانهی تصادفی کخ هر دو داری بعد log۴/log۳ = ۱/۲۶ هستند ولی لزوما در مورد بقیه فرکتالها این برابری وجود نداره!
نکته: فرکتالهای غیرمعمولی تصادفی نیستد!
درسته که فرکتالهای تصادفی شکل عجیب و غریبی دارند ولی هر فرکتالی که شکلش برای ما عجیب به نظر برسه لزوما تصادفی نیست؛ ممکنه با یک قاعدهی منظمی ساخته شده باشه که به نظر ما تصادفی برسه! کافیه که شکلتقارن خوبی نداشته باشه یا اینکه قاعدهی ساختش یکمی پیچیده باشه اون موقع به راحتی میشه گول خورد! پس مواظب باشید که گول ظاهر فرکتالها رو نخورید 😀 مثلث و فرش سیرپینسیکی میتونند با یک شکل غیرعادی ظاهر بشند، درصورتی که با یک قاعدهی کلی ساخته شدند. هر چند که اینها تقارن خوبی ندارند ولی تصادفی نیستند!
بازی آشوب:
فرض کنید یک مثلث با رئوس A , B , C داریم. یک نقطهی دلخواه داخل این مثلث انتخاب میکنیم و اسمش رو میذاریم نقطهی 0. بعد تاس میریزیم و بسته به این که عددی که اومدی چنده به طرف یکی از رئوس حرکت میکنیم، جوری که مثلا اگر عدد ۱ یا۲ اومد به سمت راس A، اگر عدد ۳ یا ۴ اومد به سمت راس B و اگر ۵ یا ۶ اومد به طرف راس C حرکت میکنیم. فرض کنید که عدد تاس ۲ هست، پس به طرف راس A حرکت میکنیم و بین نقطهی 0 و راس A نقطهی 1 رو مشخص میکنیم. (خط واصل نقطهی 0 و راس A رو رسم میکنیم و وسط این پاره خط رو 1 نام گذاری میکنیم.) مجددا تاس میریزیم و بسته به این که چه عددی بیاد دوباره مثل قسمت قبل به سمت راس مطلوب میریم و بین اون راس و نقطهی 1 رو 2 نام گذاری میکنیم. برای مثال اگر توی این مرحله عدد تاس ۵ باشه باید نقطهی 1 رو به راس C وصل کنیم و وسط این پاره خط رو 2 نام گذاری کنیم. اگراین کار رو همین جوری ادامه بدیم نقاط مختلفی داخل مثلث ایجاد میشه که فعلا به ظاهر چیز به دردبخوری نیستند! ولی اگر این کار رو ۱۰۰ بار یا ۱۰۰۰ بار یا ۱۰۰۰۰۰ بار انجام بدیم به یک شکل آشنا میرسیم، به شکل نگاه کنید:
شکل حاصل پس از ۱۰۰۰۰۰بار پس از ۱۰۰۰ بار پس از ۱۰۰ بار
خب این فوقالعاده جالبه! ما با استفاده از یک فرایند کاملا تصادفی (شانسی) به یک چیز کاملا مشخص رسیدیم! این برای شما عجیب نیست؟ ما کاملا الله بختکی تاس ریختیم و نقطه گذاشتیم و رسیدیم به مثلث سیرپینسکی! بازی آشوب اثبات تحلیلی خوبی داره که به نظرم گفتنش اینجا ممکنه حوصلهتونو سر ببره!
بازی آشوب به ما نشون داد که یک سیستم دینامیکی تصادفی میتونه منجر به نتایج مشخصی بشه و به عبارت دیگه از دل یک فرایند کاملا نامنظم، نظم به وجود میاد! نکتهی قابل توجه اینه که اگر ما شانس (تاس ریختن و انتخاب تصادفی هر راس) رو کنار بذاریم و از یک فرایند مشخص استفاده کنیم، مثلا ABCABCABC…اون موقع دیگه به مثلث سیرپینسکی نمیرسیم! چیزی که خیلی جالبتره اینه که هرشکلی (چه فرکتالی چه غیرفرکتالی) رو میشه به کمک یک بازی آشوب یا یک بازی آشوب تعمیم یافته ساخت!
توی بازی آشوب تعمیم یافته از تبدیلات آفین استفاده میشه. (تبدیلات آفین تبدیلاتی هستند که خطوط موازی هر شکل رو پس از تبدیل موازی نگه میدارند). هر حرکت توی بازی آشوب تعمیم یافته یک تبدیل آفینه و شما به کمک این بازی میتونید هر شکلی رو که دوست دارید بسازید! به همین سادگی، به همین خوشمزگی! مثلا با یک بازی آشوب تعیمیم یافته با و استفاده از چهارتا تبدیل آفین میشه یک سرخس ساخت!
تبدیل آفین – حافظ توازی خطوط
این پست رو با اشاره به یک قضیه به پایان میبرم؛
قضیهی کلاژ: «برای هر شکلی با هر هندسهای میتوان یک بازی آشوب ساخت که آن شکل را تولید کند.».
این قضیه (و بازی آشوب) پل بین بینظمی و نظم هست. شما از هرج و مرج به نظم و از نظم میتونید به هرج و مرج برسید! از کاربردای دیگهی این قضیه فشرده سازی تصاویره. فرض کنید که شما یک فایل تصویری حجیم رو میخوایید که برای کسی ایمیل کنید و اینترنت خوبی ندارید یا اینکه میخوایید از یک شبکهی ضعیف ردش کنید؛ کافیه به جای تصویر، با استفاده از قضیه کلاژ، بازی آشوبی که اون رو تولید میکنه (چند خط کد که کامیپوتر براتون میسازه) بفرستید و شخصی که این بازی رو دریافت میکنه با اجرا کردنش میتونه به تصویر مطلوب برسه!
پیشنهاد میکنم فیلم «آشوب (۲۰۰۶)» رو ببینید!فیلم علمی نیست ولی توش در مورد بینظمی و اینا حرف زده میشه که ممکنه براتون جالب باشه! به نقل از ویکی پدیا: «داستان دربارهی یک گروه سارق مسلح است که به بانکی حمله کرده و از حساب فردی سرقت میکنند. پلیسانی که به دنبال این افراد هستند عبارتند از یک مامور ابقا شده (زیرا سارقان بانک فقط چنین بازرس معلق شدهای را قبول دارند، با بازی جیسون استاتهام) و دستیارش که فرزند یک پلیس اسطورهای است. دستیار متوجه می شود که سارقان به طور رمزی از نظریه آشوب حرف میزنند و با دقت بیشتری تمام مدارک را بررسی میکند تا به این نتیجه میرسد که باید به دنبال چه افراد سابقداری برود. او متوجه میشود هدف آنها سرقت یک میلیارد دلار پول بوده که از طریق ویروسهای کامپیوتری دزدی شده است …»
معمولا کتاب هایی که بیانگر زندگی افراد تاثیر گذار هستند رو دوست دارم، به شرطی که نویسندهش قصد کاسبی نداشته باشه! از طرفی خیلی وقته که سراغ فیزیک اومدم، برای همین سعی کردم کتابهایی که انتخاب میکنم معطوف به فیزیکدان ها و ریاضیدان ها باشه. کتاب «دنیایی که من می بینم» نوشته آینشتین رو خوندم جالب بود. یک سری کتاب دیگه هم هست که فیزیکدان ها نوشته باشند: «جز و کل» نوشتهی هایزنبرگ، «زندگی چیست؟» نوشتهی شرودینگر و … همین طور چند تا فیلم خوب هم پیدا کردم؛ یکیشون «ذهن زیبا» داستان زندگی جان نش ریاضیدان برنده نوبل اقتصاد بود. یکی هم «آینشتاین و ادینگتون» که ماجرای نسبیت رو به تصویر میکشید و آخری هم فیلم «فاجعهی چلنجر» ماجرای انفجار شاتل چلنجر و بررسی اون فاجعه توسط ریچارد فاینمن بود! دیدن این سه تا فیلم رو به علم (به ويژه فیزیک) دوستان پیشنهاد میکنم.
اخیرا کتاب «حتما شوخی میکنید آقای فاینمن!» Surely You’re Joking, Mr. Feynman!”: Adventures of a Curious Characterرو خوندم! فوق العاده بود! ماجرای زندگی فاینمن به روایت خودش! اطلاعی در مورد ترجمهی کتاب ندارم ولی شنیدم که این کتاب با مشخصات: «ماجراجوئیهای فیزیکدان قرن بیستم ریچارد فاین من/ رالف گیل تون؛ مترجمین توراندخت تمدن (مالکی)، اردوان مالکی/ مشخصات نشر: تهران: علم، ۱۳۸۲» خیلی وقت پیش ترجمه شده (من توی بازار ترجمه شده ش رو ندیدم تاحالا، اگه هم باشه احتمالا هرس شده!) [دانلود کتاب]
فاینمن برنده جایزه نوبل فیزیک و همین طور جایزه های مهم دیگه ای هست و بیان اینکه فاینمن جزو ده فیزیکدان بزرگ کل تاریخه جفا نیست؛ اما چیزی که سبب شده تا فاینمن اینقدر محبوب بشه هیچکدوم از این ها نیست! فاینمن جذاب و دوست داشتنی بود و هست چون که یک معلم فوق العاده بود و شخصیت جالبی داشت. درس گفتارهای فاینمن کماکان از بهترین دوره های فیزیکه! در مورد بقیه آثار فاینمن به صفحهی ویکی پدیا فاینمن رجوع کنید! کتاب «حتما شوخی میکنید آقای فاینمن!» ماجرای زندگی فاینمن رو از دوران کودکی تا زمانی که جایزه نوبل رو میگیره شامل میشه (بقیهی زندگی فاینمن توی کتاب «چه اهمیتی داره که مردم چی فکر میکنند؟» نوشته شده! اونم کتاب خوبیه، ولی به جذابیت این نیست!). «حتما شوخی میکنید آقای فاینمن!» جزو اون دسته از کتابهاییه که واقعا جذابه، جوری که شما همهش دوست دارید ببینید بعدش چی میشه! قول میدم خوندن این کتاب حسابی هیجان زده تون کنه!
توی پست قبلی مقدمهٔ کوتاهی دربارهٔ فرکتالها و اینکه هندسهٔ توصیف گر طبیعت یک هندسهٔ فرکتالی هست یک توضیحاتی دادم. صرف نظر از فرکتالهای ساختگی (فرکتالهایی که ریاضیدانها معمولاً میسازند مثل برفدانه کخ) به هر طرف که نگاه کنید میتونید یک فرکتال طبیعی رو مشاهده کنید. سر سفره «کلم ترشی (یا بروکلی)»، کنار ساحل «خطوط ساحلی»، «برگ درخت»، «ششها (ریه)»، «رعد و برق» و … خب این فرکتالها چه ویژگی دارند؟ فرکتالها ۳تا ویژگی خاص دارند که بهشون اشاره میکنم:
۱) فرکتال ها خودمتشابه هستند!
یک گلکلم یا کلم بروکلی رو در نظر بگیرید؛ اگه با یک چاقوی تیز، یکی از گلچههای گل کلم رو ببرید و جداگانه بهش نگاه کنید؛ چیزی که به نظر میرسه یک گل کلم کامله، اما کوچکتر! اگه باز برش بدید، دوباره، دوباره، دوباره، …، شما گلکلمهای کوچکتری بدست می آرید. به تجربه دیده شده که بعضی از اشکال این خاصیت عجیب رو دارند، یعنی هر قسمت از شکل مثل کل شکله با این تفاوت که اندازه کوچکتری داره. به این خاصیت خود متشابهی میگند. توی برفدانه کخ هم اگر قسمتی از شکل روجدا کنید میبینید که دقیقاً مثل کل شکله و این تشابه هیچ وقت قطع نمیشه و همینطور ادامه داره! ممکنه که شما بگید یک خط راست هم اگر تکهتکه بشه باز هم شکل قسمت اول رو داره پس فرکتاله! اولا اشتباه نکنید یک ویژگی شرط لازمه نه کافی! در ثانی معمولاً منظور ما از خود متشابه بودن، خود متشابه بودن در یک الگوی غیرعادی و غیربدیهیه!
کلم بروکلی، موجودی با ساختار فرکتالی – نمونه یک موجود خودمتشابه 🙂
۲) فرکتال ها دارای بعد غیرصحیح هستند!
همیشه ما با ابعاد صحیح روبه رو بودیم! مثلاً میگیم خط موجودی ۱بعدی، مربع یک شکل ۲ بعدی و مکعب یک شکل ۳بعدیه (ابعاد اقلیدوسی، همه هندسه ای که ما اول یادمیگیریم اقلیدوسی هست)! حتی فضا-زمان در نسبیت ۴ بعدیه و نه مثلاً ۳/۴۵ بعدی! همینطور نظریههایی مثل ریسمان هم که فراتر از ۳ بعد رفتهاند هنوز تعداد بعد توجیه کنندهشون صحیحه مثلاً ۱۱ نه ۱۱/۲۴! ممکنه بپرسید این غیرصحیح بودن بعد فرکتالها دیگه چه صیغه آیه! پس اجازه بدید که «بعد» رو تعریف کنیم. به این شکل نگاه کنید:مطابق شکل، فرض کنید که از یک قطعه شکل سمت چپ میخوایم شکل بزرگتر (با بزرگنمایی ۳ برابر) رو درست کنیم؛ برای این کار به چند قطعهٔ هم اندازه با شکل سمت چپ نیاز داریم؟ برای خط معلومه، اگه همون خط قبلی سه برابر بشه (طولش) شکل جدید حاصل میشه، پس به ۳قطعه هماندازه نیاز داریم. برای مربع هم مثل خط میمونه با این تفاوت که هم طولش ۳ برابر میشه و هم عرضش (به شکل نگاه کنید) پس ما به ۹ قطعهٔ هماندازه نیاز داریم؛ و وقتی هم که مکعب میشه، بزرگنمایی هم برای طول و هم برای عرض و هم برای ارتفاع اتفاق افتاده و این دفعه به ۲۷ مکعب نیاز داریم. (به شکل نگاه کنید!) خب این عددهای به دست اومده رو دوباره نگاه کنیم. من توی یک جدول مینویسمشون؛
فکر کنم رابطه ای که بین این اعداد هست رو فهمیدید: ۳ و ۹ و ۲۷! یک رابطه که یک تصاعد هندسی هست رسما:
تعداد قطعه هماندازه برای ساخت شکل جدید = بزرگنمایی به توان بعد شکل
از روی این رابطه با استفاده از لگاریتم گیری از طرفین میشه بعد را بدست اورد، یعنی «بعد» میشه:
بعد = لگاریتم تعداد قطعه هماندازه برای ساخت شکل جدید تقسیم بر لگاریتم بزرگنمایی
اگر n تعداد قطعات و m بزرگنمایی باشه:
ما در حقیقت یک تعریف از بعد ارائه کردیم. بعد خودمتشابهی! خب با این تعریف بریم سراغ محاسبهی ابعاد فرکتال ها؛ فرض کنید یک برفدانه به این شکل میسازیم که مثل شکل قبل از یک مربع با (با بزرگنمایی ۳) یک مربع بزرگتر که شامل ۹ مربع هم اندازه با مربع اولیه هست به وجود میاد.
حالا مربعهای کوچیک بالایی، چپی، راستی و پایینی مربع کوچیک مرکز رو مطابق شکل حذف میکنیم. اگر همین روند رو ادامه بدیم یک برف دانه ساخته میشه! (n روی شکل منظور مرحلهٔ ساخت شکله با n تعداد قطعات کوچکتر اشتباه نگیرید!)
بعد این برفدانه همین جور که میبینید یک عدد بین ۱ و ۲ هست! و اینجاست که دیگه بعد، یک عدد صحیح به دست نمیاد. مندلبرو اسم این بعد رو «ناهمواری» میذاشت که تعریف جالبتریه مخصوصاً برای اجسامی که دارای برآمدگی هم باشند! چیزی که الان مطرح میشه اینه: معنی این ۱/۴۶۴۹۷ چیه؟ ما میدونیم که یک موجود دو بعدی یعنی اینکه توی صفحه جا میشه و یک موجود یک بعدی یعنی یک خط! پس این عدد بین ۱ و ۲ یعنی چی؟! این به همون ماجرا برمیگرده که وقتی ساختن این شکل رو تا بینهایت ادامه بدیم با یک شکل پر از لبه رو به رو میشیم. در ضمن یادآوری کنم که این فقط یک عدد هست! هر چند مفهوم قشنگی پشتش هست ولی یک عدده که ناهمواری شکل رو مطرح میکنه! به هر حال کاری که ریاضیدانها بکنند قرار نیست واقعاً واقعی باشه 🙂
یک نکتهٔ دیگه اینکه هیچ وقت مطرح نمیشه که «اندازهٔ یک فرکتال» یا «متوسط اندازه یک فرکتال» چقدره بلکه همیشه ما با همین عدد که بعد غیرصحیح یا ناهمواری فرکتال هست کار میکنیم! شما امروز میتونید یه عدد به عنوان ناهمواری به کامپیوتر بدید و اون در کسری از ثانیه یک شکلی با اون ناهمواری رو براتون تولید کنه یا یک شکل دلخواه رو با اون ناهمواری بازتولید کنه! به همین سادگی! تقریباً هندسه فرکتالی پیشرفت زیادی کرد چون سر و کله کامپیوتر پیدا شد. در مورد این توی قسمت آخر بیشتر توضیح میدم!
خب بریم سراغ یه مثال دیگه؛ مثلث سیرپینسکی فرض کنید یک مثلث (متساوی الاضلاع برای قشنگی بیشتر!) داریم. وسط هر ضلعش رو مشخص میکنیم و بهم وصلشون میکنیم تا ۴ تا مثلث جدیدتر ساخته بشه. مثلث وسط رو دور میریزیم. این کارو تا ابد انجام میدم. الان ما یک فرکتال داریم که بعدش ۱/۵۸ هست: این عدد بیشتر از عدد قبل هست، فکر کنم شکل خودش نشون میده که ناهمواری مثلث سیرپینسکی از برف دانه ای که ساختیم بیشتره!
شیوه ایجاد مثلث سیرپینسکی
۳) بعد خود متشابهی فرکتالها از بعد توپولوژیک اونها بیشتره!
این که بعد توپولوژیک دقیقا چیه، چیزیه که از حوصلهی این پست خارجه! شاید جداگونه در موردش بنویسم ولی فعلا به عنوان آشنایی، همین جوری که ما بعد خود متشابهی رو به صورت تقسیم دوتا لگاریتم تعریف کردیم میشه یه جور دیگه با ادبیات و شاید بهتره بگم ریاضیات مناسبتری بعد رو تعریف کرد و اون موقع یک سری عدد جدید به دست میاریم. این اعداد در مورد فرکتالها جوریه که با مقدار خودمتشابهی شون فرق دارند و کمتر از اونها هستند مثلا بعد توپولوژیکی مثلث سیرپینسکی ۱ و بعد خودمتشابهیش (همین جوری که حساب کردیم) ۱/۵۸۵ هست که ۱/۵۸۵ > ۱!
خب جمع بندی کنیم؛ فرکتال ها دارای سه ویژيگی: ۱) خودمتشابهی ۲) دارای بعدخودمتشابهی غیرصحیح و ۳) بعدتوپولوژیکی کمتر از بعد خودمتشابهی هستند! پیشنهاد میکنم ویدیو زیر رو حتما ببینید؛ سخنرانی مندلبرو (پدر هندسه فرکتالی) در تد هست. درست چندماه بعد از این سخنرانی، مندلبرو، پیرمرد مهربان دنیای فرکتال ها به خاطر سرطان لوزالمعده ای که داشت از دنیا رفت. روحش قرین آرامش باد!
قصد دارم تا توی ۵ تا پست در مورد فرکتالها (برخال ها – fractals) بنویسم. این پست رو اختصاص میدم به یک مقدمه و معرفی در مورد این موضوع:
همه ی ما با شکل هایی مثل دایره، مثلث، مربع، خط راست، چندضلعی ها و … آشنا هستیم، اشکال اقلدیسی که ساده ترین هندسه موجود (هندسه اقلدیسی) رو میسازند و ما به کمک اونها میتونیم یک تقسیم بندی برای اشکال محیط دور و برمون داشته باشیم. ولی حقیقت اینه که طبیعتی که ما اون رو توصیف میکنیم اصلا شکل اقلیدوسی نداره! به عبارت دیگه شکل هایی که توی دنیای واقعی هستند اقلیدوسی نیستند! به قول بنوآ مندلبرو، پدر هندسه فرکتالی:
«ابرها کره نیستند، کوها ها مخروط نیستند، خطوط ساحلی دایره نیستند، پوست درخت صاف نیست و همین طور نور روی خط راست حرکت نمی کند!»
در حقیقت هندسه ای که دنیای اطراف ما رو توصیف میکنه یک هندسه پیچیده تری هست به نام هندسه برخالی یا هندسه فرکتالی. اجازه بدید موضوع رو با یک مسئله اندازه گیری ادامه بدم؛ فرض کنید به عنوان یک گردشگر وارد اصفهان -نصف جهان – شدید و میخواهید که فاصله ی بین پل خواجو تا سی و سه پل رو کنار زاینده رود قدم بزنید. از یکی از بومی های اونجا می پرسید که فاصله ی این پل تا اون پل چقدره و احتمالا جوابی حول و حوش ۲ کیلومتر میشنوید که برای یه قدم زدن، مناسب به نظر میرسه. خب این ۲ کیلومتری که جواب شماست چه جوری اندازه گیری شده؟ قریب به یقین مثل اندازه گیری فاصله دوتا شهر بوده. ولی اگه شما بخواهید دقیق این فاصله رو اندازه گیری کنید، یعنی از روی خطوط ساحلی این کارو انجام بدین بسته به این که واحد اندازه گیریتون چی باشه (چه اندازه ای باشه) جواب های مختلفی به دست میارید. فرض کنید با چند تا خط کش با طول های ۱۰۰، ۵۰ و ۱۰ سانتی متری این کارو میخواهید انجام بدین. چون خطوط ساحلی خم های کج و معوجی هستند، هر چقدر خط کش شما کوچیک تر باشه، خط کش شما نزدیک تر به شکستگی ها میشه و شما دقیق تر اندازه گیری میکنید. نکته اینجاست که با کوچیک و کوچیک تر شدن خط کش (واحد اندازه گیری) عدد به دست اومده بزرگ و بزرگتر میشه. بنابراین دقیق ترین اندازه گیری وقتی هست که طول خط کش به صفر میل کنه و مجموع واحدهای اندازه گیری شما (که حالا تبدیل به نقطه شدند) کاملا بر خطوط ساحلی منطبق بشه. ولی خب یه مشکلی هست و اون اینه که در این صورت عدد شما به بینهایت میل میکنه که خوشایند نیست! یعنی شما باید یک مسیر بینهایت طولانی رو قدم بزنید! نه نگران نباشید، چیزی که شما می پیمایید اون خطوط ساحلی نیست! شما موقع قدم زدن یک سری خط راست بهم پیوسته رو می پیمایید که همون ۲ کیلومتر میشه (خدا رو شکر کنید که دقیقا از روی خطوط ساحلی نمیتونید حرکت کنید . و گرنه هیچ وقت نمی رسیدین!) خب شاید این یکمی برای شما عجیب باشه که در یه جای محدود یه خم با طول بینهایت پیدا شده. خب راستش این مفهوم عجیب، مفهوم هندسه فرکتال ها رو داره میگه!
برای روشن شدن قضیه بذارید یه مثال با شهود ریاضی بیشتری بزنم؛
برف دانه کخ
برفدانه ی کخ! یک مثلث (برای راحتی فعلا متساوی الاضلاع) به ضلع یک رو در نظر بگیرید. خب محیط این مثلث (جمع جبری اندازه ی اضلاع) هست ۳ و مساحت این مثلث طبق رابطه ای که برای مثلث های متساوی الاضلاع وجود داره هست رادیکال ۳ تقسیم بر ۴ ضرب در مربع طول یکی از اضلاع. حالا اگر ما توی هر مرحله این بلا
رو سر مثلث بیاریم که هر ضلعش رو مطابق شکل به سه قسمت تقسیم کنیم، قسمت وسطش رو دور بریزیم و دو قسمت هم طول با اون رو بالا بیاریم
اون موقع محاسبات پایین نشون میده (امیدوارم واضح باشه) که بعد از n مرحله محیط و مساحت به چه عددی میل میکنه:
برای محیط:
برای مساحت:
این نشون میده که این شکل که از ابتدایی ترین فرکتال ها هست دارای مساحت محدود ولی محیط نامحدود (بی نهایت) هست. که همون ماجرای اندازه گیری طول خطوط ساحلی از پل خواجو تا سی و سه پل هست. فکر کنم برای مقدمه کافی باشه!
خیلی از آدمها دل خوشی از ریاضیات ندارند. مثلا شخصا با آدمهای زیادی رو به رو شدم که میگند: «ما از فیزیک خیلی خوشمون میاد ولی به خاطر ریاضیاتش ازش فاصله میگیریم!» اینکه فیزیک، دستش توی دست ریاضیات بوده و هست رو نمیشه انکار کرد ولی خیلی از او اوقات میشه خیلی از مفایهم فیزیکی رو بدون استفاده از ریاضیات، مخصوصا ریاضیات پیچیده مطرح کرد. یکی از کسانی که همیشه به بهترین شکل ممکن این کارو انجام داده، ریچارد فاینمن هست! ریچاردفاینمن معروفه به بهترین معلم فیزیک. کسی که مفاهیم رو برای شما به بهترین شکل ممکن توضیح میده 🙂 به قول ویکی پدیا، شاید قابل دسترسترین کار فنی فاینمن برای هر علاقهمندی به فیزیک، «درسگفتار های فیزیک» اون هست. درسگفتارهای فاینمن توی ۳ جلد سالهاست که چاپ میشه و میشه بگی کامل ترین و جذاب ترین دوره ی فیزیک حساب میشه.
شش قسمت از این درسگفتارها جدا شده و تحت عنوان کتاب «شش قطعه ی آسان،مبانی فیزیک به روایت ریچارد فاینمن» چاپ شده. توی این کتاب خبری از ریاضیات نیست و سراسر کتاب حرفهای جالب و مهیج در مورد پدیده های فیزیکیه. کتاب به خوبی به فارسی ترجمه شده و خوندنش واقعا لذت بخشه. در فصل اول کتاب، در مورد اتم ها صحبت شده و اینکه به کمک این ذرات چه جوری میشه دنیا رو توصیف کرد! توی فصل بعد فاینمن در مورد اصول فیزیک حرف میزنه و یک مروری بر روی فیزیک از قبل ترها تا به امروز میکنه. توی فصل سوم فاینمن در مورد رابطه ی فیزیک با بقیه علوم حرف میزنه، رابطه فیزیک با: شیمی، زیست شناسی، نجوم، زمین شناسی، روان شناسی و … حرف میزنه! این قسمت کتاب فوق العاده ست! چند قطعه از این قسمت رو بخونید:
«یکی از مهمترین موفقیت های نجوم کشف سرچشمه ی انرژی ستاره ها بوده است، یعنی همان منبعی که دوام سوختنشان را تضمین میکند. یکی از کسانی که این را کشف کرد، شب بعدش که فهمیده بود درخشش ستاره ها باید به خاطر وقوع واکنش های هسته ای در آنها باشد، با همسرش به گردش رفته بود. زن میگوید: «می بینی ستاره ها چقدر قشنگ می درخسند؟» و مرد میگوید: «بله، و درست همین الان من در دنیا تنها کسی هستم که میداند چرا میدرخشند.» زن فقط میخندد! لابد اینکه شوهرش در آن لحظه تنها کسی است که علت درخشش ستاره ها را میداند برایش زیاد اهمیتی نداشته است. خب، غم انگیز است که آدم تنها بماند، ولی چه می شود کرد که دنیا معمولا همین طوری است!»
«شاعران گفتهاند که علم، زیبایی ستارگان را ضایع میکند. چونکه آنها را صرفاً کرههایی از اتمها و مولکولهای گاز میداند. اما من هم میتوانم ستارهها را در آسمان شب کویر ببینم و شکوه و زیباییشان را حس کنم. میتوانم این چرخ و فلک را با چشم بزرگ تلکسوپ پالومار تماشا کنم و ببینم که ستارهها دارند از همدیگر، از نقطهی آغازی که شاید زمانی سرچشمهی همگیاشان بوده است، دور میشوند.گمان نمیکنم جستجو برای فهمیدن این چیزها، لطمهای به رمز و راز زیبایی این چرخ و فلک بزند. راستی شاعران امروزی چرا حرفی از این چیزها نمیزنند؟ چه جور مردمانی هستند این شاعران که اگر ژوپیتر خدایی در هیئت انسان باشد، چه شعرها برایش که نمیسرایند، اما اگر در قالب کرهی عظیم چرخانی از متان و آمونیاک باشد، سکوت اختیار میکنند؟»
«یک شاعری گفته است: «عالم همه نهفته در جام باده ای است.» احتمالا هیچ وقت نخواهیم فهمید که این حرف را به چه منظور زده است، چون شاعران معمولا منظورشان این نیست که مردم از گفته هایشان سر در بیاورند. اما این درست است که اگر به جام شرابی خیلی از نزدیک نگاه کنیم، همه عالم را در آن می بینیم،. آنجا پر از پدیده های فیزیکی است: مایع پر پیچ و تابی که دارد به مقتضای نوع مایع و دمای هوا کم کم تبخیر می شود؛ بازتاب های نور در جام؛ و اتم هایی که به کمک تخیلمان می توانیم وجودشان را حس کنیم. شیشه خود جام در واقع نوعی عصاره ی سنگ های زمین است و در ترکیب آن می توانیم به رازهای عمر و قدمت عالم، و حتی تکامل ستاره ها پی ببریم. چه ملغمه ی عجیب و غریبی از مواد شیمیایی که در شراب نیست؟ شراب چه طور شراب شده است؟ مخمر، آنزیم، دُرد و محصولات آنها. از همین شراب می شود یک چیز بسیار کلی استباط کرد: کل حیات «تخمیر» است. درک شیمیایی شراب بدون آگاهی از کشف لویی پاستور -همان کشفِ موجوداتِ عامل اغلب بیماری ها – ممکن نیست. چه سرزنده و جوشان است این شراب، که موجودیتش را چنین به آگاهی نظاره گرش اعلام میکند! اگر مغز کوچولوی ما،محض راحتی خودش، این جام شراب را، این عالم را به بخش هایی تقسیم میکند – به فیزیک، زیست شناسی، زمین شناسی، اخترشناسی، روان شناسی و غیره – یادتان باشد که طبیعت خودش از آن خبر ندارد! پس بیایید قطعه ها را دوباره به هم وصل کنیم، تا فراموشمان نشود که در اصل چه چیزی و برای چه کاری بوده است. بگذارید یک کیف آخر هم به ما بدهد: چه طور است جام باده را سربکشیم و فعلا بی خیال!»
در فصل ۴ کتاب، پایستگی انرژی به زیبایی مطرح شده. بیان فاینمن فوق العاده است و به خاطر مثال های ساده ای که میزنه همه نوع خواننده ای رو پای کتاب نگه میداره! قسمت بعد کتاب که به نظر من بهترین فصلشه، نظریه ی گرانش هست. حرکت سیاره ها،
قوانین کپلر، قانون گرانش نیوتون، گرانش جهانی و قدری هم نسبیت به بهترین شکل ممکن توضیح داده شده! خبری از ریاضیات پیچیده نیست ولی فاینمن کاملا با مهارت خارق العاده ای این مباحث رو گفته! من که لذت بردم! فصل آخر کتاب هم در مورد کوانتوم هست. شاید این قسمت کمی سخت تر از بقیه به نظر برسه، مخصوصا اگه سرو کار زیادی با کوانتوم قبلا نداشته اید، به هرحال کوانتومه دیگه! ولی باز هم شیوه ی بیان کوانتوم توی این کتاب از بهترین هاست.
در کل این کتاب بسیار هیجان انگیز و پرفایده ست. چه شما دانشجوی فیزیک باشید، چه یک فردی که فقط دوست داره ببینه دنیا چه جوری کار میکنه، پیشنهاد میکنم این کتاب کمتر از ۲۰۰ صفحه ای رو حتما بخونید!
امیدوارم ما بقی آثار فاینمن رو بخونم و تجربه مطالعه ی اونا رو هم بگم! یا شاید هم شما بخونید و بگید 🙂
«هنگامی که کودکان به دانشمندان بزرگ چنان بنگرند که به موسیقیدانان و هنرپیشه های بزرگ مینگرند، آنگاه تمدن بشری به سطح بعدی میجهد.»
برین گرین
“When kids look up to great scientists the way they do to great musicians and actors, civilization will jump to the next level” ― Brian Greene
برایان گرین (به انگلیسی: Brian Greene) (زاده در ۹ فوریه۱۹۶۳، نیویورک) فیزیکدانآمریکایی و یکی از نظریهپردازان نظریه ریسمان است. او از سال ۱۹۹۶ در دانشگاه کلمبیا به تدریس میپردازد. وی در ۱۲ سالگی آن چنان در ریاضی توانایی پیدا کرد که یک استاد دانشگاه به او خصوصی درس میداد. گرین در سال ۱۹۸۰ وارد دانشگاه هاروارد شد و لیسانس فیزیک گرفت. در سال ۱۹۹۶ دکترای خود را با بورس رودز در دانشگاه آکسفورد گرفت. گرین از سال ۱۹۹۶ تا کنون در دانشگاه کلمبیا به سر میبرد. و به آموزش و پژوهش در کیهانشناسی و نظریه ریسمان میپردازد. پیش از این او در سال ۱۹۹۰ به دانشکدهٔ فیزیک دانشگاه کرنل پیوسته بود. وی استا دی خود را در سال ۱۹۹۵ در این دانشگاه گرفته است. گرین کتاب جهان زیبا را در سال ۱۹۹۹ نوشت که بسیار پرفروش بود و جایزههای جهانی بسیاری را از آن خود کرد. این کتاب به نظریه ریسمان و اِم میپردازد. پس از آن یک فیلم ۳ ساعتهٔ عامهفهم در شبکهٔ پیبیاس که بر پایهٔ کتاب جهان زیبا ساخته شده بود موفقیت او را دوچندان کرد. کتاب جدید او ساخت کیهان نام دارد که در سال ۲۰۰۴ منتشر شد و در آن از زمان و جهان سخن میرود.