رفتن به نوشته‌ها

نویسنده: ایمان مهیایه

در باب جایزه‌ی نوبل فیزیک ۲۰۱۶: «گذار فازهای تپولوژیک و فازهای تپولوژیک ماده»

 

یه گذار روزمره مثل تغییر فاز آب رو در نظر بگیرید. گاز و مایع به واقع شبیه هم هستن! هر دو از نظر ما بی نظم هستن! حالا یکی یه کم بیشتر یکی یه کم کمتر. اما هیچ کدوم جامد منظم نیستن که همه سرجاشون نشسته باشن. 
مثال دیگه مواد مغناطیسی است. اینا توشون کلی ذره دارن که هر کدوم یک جهتی داره برای خودش- به زبان فنی اسپین. حالا دما خیلی زیاد باشه ماده‌مون که مغناطیسی نیست! یعنی مثلن آهن مذاب در دمای بالا براش سخته منظم باشه، به هم ریخته است. پس اون جهت‌ها همه تصادفی اند و بالطبع متوسط‌شون صفر و ماده مغناطیسی نیست! اما اگر دما پائین بیاد اوضاع عوض میشه، اینا می‌تونن یه جهت خاص رو بگیرن. به این میگن شکست خود به خودی تقارن

بالاتر از دمای بحرانی (نقطه کوری)، ماده دیگر مغناطیسی نیست.
بالاتر از دمای بحرانی (نقطه کوری)، ماده دیگر مغناطیسی نیست.

مردم با همین میخ و چکش سراغ هر تغییر فازی می‌رفتن و سربلند بیرون می‌اومدن. اما یهو آقای فون‌کیلیتزینگ یه چیز جالب دید: اگر یه مشت الکترون رو به دوبُعد محدود کنید، و بَعد میدان مغناطیسی روشن کنی (این همون روشی است که باهاش فهمیدن حامل بار، بارش منفی است) رسانندگی (همون جریان به ولتاژ با یک مشت ضریب) بهت یک سری عدد میده:۱ و۲ و۳ و … بعدتر عددهای کسری عجیب اما خاصی هم پیدا شدن. اما این طور نیست که شما بگی ۱۷.۳۰۸ بعد ما بهت بگیم آهان، میدان فلان رسانندگی اینه که تو می خوای! اعداد طبیعی یا کسری خاص! هرکی به هرکی نیست!

چند خم بسته با Winding Numberهای متفاوت.
چند خم بسته با Winding Numberهای متفاوت.

خب مردم هی دست به دهان بودن که چه طور میشه وسط این همه خطای آزمایش و کثیفی نمونه و غیره این اعداد این قدر خاص باشن؟! چرا این همه چیز پیوسته عوض میشه اما اینا نه؟!!

خب بالطبع اول سعی کردن که همون میخ و چکش رو استفاده کنن. اما این درب بسته بود. اما جناب تاولز و همکاراش نشون دادن که میشه اون اعداد رو محاسبه کرد. اینکه اون اعداد واقعن در اون مساله که بالا گفتم (اثر کوانتومی هال ) از کجا و چطور به دست میاد، رو کاریش نداریم، اما میشه یه مثال ساده زد؛ یک خم بسته‌ی دلخواه روی صفحه بکشید. بعد ببینید این خم چند بار مبدا رو دور زده؟! فرض کنید حالا یه میله ی بزرگ دارید و این خم شما در واقع یک ریسمان است. شما اون عدد (winding number) ریسمان رو مگر با بُریدن ریسمان نمی تونید تغییر بدید.

از سوی دیگه اون عدد همیشه یک عدد طبیعی است: ۰ و ۱ و غیره. حالا در اون دنیا این ریسمان چیز عجیب غریب تری است!

فازهای مختلف ماده - نگاره از nobelprize.org/
فازهای مختلف ماده – نگاره از nobelprize.org

ولی خب کلیت داستان همین است. یعنی یک عددی هست که اتفاقن در برخی موارد همین تعداد دور زدن‌های یک خم بسته حول مبدا است و جز با بُریدن نمیشه تغییرش داد. این بُریدن‌ها در واقع در دنیای جدید به معنای همون گذار فاز هستن، انگار که مایع می‌شد جامد! اینجا هم وقتی ریسمان مربوطه بُریده شد و دوباره بسته شد عدد می‌تونه تغییر کنه! به زبان فنی‌تر در واقع این عدد تا زمانی که سیستم گاف انرژی داشته باشه نمی‌تونه تغییر کنه، و اگر گاف بسته و دوباره باز بشه(مثلن با تغییر یک کمیت مثل میدان مغناطیسی) عدد مورد نظر ما می‌تونه عوض بشه. به خاطر این خواص خیلی سفت و سختش هست که بهش میگن توپولوژیک!پس مساله ی اول حل شد 🙂 تاولز تونست با همکاراش نشون بده که اون اعداد از کجا میان. البته بگم اعداد کسری هنوز حل نشده هستن! خب این حالتهای ماده و این تغییر اعداد، این تغییر نظم(!!!) با یک سری عدد توصیف میشه و توپولوژی!

حالا یک چییز دیگه: همون اسپین‌ها رو در نظر بگیرید. حالا فرض کنید دو بُعد داریم. میشه حالتی رو تصور کرد که همه‌ی اسپین‌هایی که دورمبدا هستن به سمت خارج هستن! عین خطوط میدان یک بار الکتریکی! اصلن همین مثال خوبه! شما می گید ئه!! همه به سمت بیرون هستن پس باید یه چیزی اونجا باشه! حالا اینجا نمی گیم بار، میگیم گردابه! و به جای مقدار بار همون winding number . آقای تاولز و کاسترلیتز نشون دادن که در دو بُعد جز اون حالت بی نظم که همه می دونستن باید اونجا باشه میشه حالاتی داشت که مثلن دو تا گردابه داشته باشه! پس دوباره سرو کله ی این اعداد طبیعی و توپولوژی و فازها پیدا شدن! این بار شما می‌تونید چند تا گردابه‌ داشته باشید، مضاف بر اون هرگردابه یک عددبرای خودش داره که شبیه به همون بار است! این گردابه‌ها و این نوع تغییر فاز در ابرشاره‌ی هلیوم دیده شد!

گذار فاز تپولوژیک
گذار فاز تپولوژیک – نگاره از nobelprize.org

اما جناب هالدین! اون گاز الکترونی و میدان مغناطیسی رو که بالا گفتم در نظر بگیرید! اونا مثلن یه ویژگی خیلی جالب که دارن این است که جریان الکتریکی از روی لبه‌ها حرکت میکنه! و خب رسانندگی ش هم اون اعداد خاص رو میده! 
تا مدت ها مردم فکر می کردن که خب میدان مغناطیسی قوی خیلی مهمه!اما هالدین در یکی از کارهاش یک مدل تئوری ساخت که بدون شار مغناطیسی خالص همون خواص رو داشت! این مدل دو سال پیش در آزمایشگاه realize شد! پس همه فهمیدن چیزای مهمتری تا میدان مغناطیسی هست!  در واقع این بنیان کاری است که در سال ۲۰۰۶،  Kane  و Mele روی گرافین کردن و عایق‌های توپولوژیک رو باز کردن. این‌ها موادی هستند که علی‌رغم اینکه نارسانا هستند، یعین در حجم‌شون گاف هست و رسانش نمی‌تونیم داشته باشیم، روی مرز‌هاشون می‌تونن رسانش داشته باشن! برای همین است که میگن عایق توپولوژیک! عایق trivial میشه همون عایق معمولی، نه تو حجم و نه تو سطح رسانش نداره! اما توپولوژیک‌ها روی سطح رسانش دارن!

اما هالدین کارهایی رو هم روی مدل‌های اسپینی کرده که تاثیر گذاشت روی چیزی که الآن بهش میگن symmetry protected topological phase. هالدین مدل‌هایی رو نگاه کرد که مردم پیش از او هم بررسی کرده بودن! همه فکر می‌کردن این مدل‌های اسپینی Gapless هستن، یعنی با کمی انرژی می‌تونید توش برانگیختگی درست کنید! این در واقع برای اسپین ۱/۲ نشون داده بودن و فکر می کردن برای اسپین‌های بالاتر هم درسته! اما هالدین نشون داد که برای اسپین‌های صحیح مثل ۱ باید دقت کرد و چیزهای دیگه‌ای هم هست که باعث میشن سیستم گاف انرژی داشته باشه! این سیستم‌ها و این خواص هم توپولوژیک هستن و به این راحتی از بین نمی‌رن اما همون‌طور که از اسم‌شون برمیاد یک تقارنی رو لازم دارن، مثلن دوران! یعنی اون خواص توپولوژیک هستند مادامی که شما اون تقارن رو حفظ کنی!

گذار کاسترلیتز تاولز رو تو کتاب کاردر خوب توضیح داده. اینا هم یه سری مقاله در مورد کارهای توپولوژیک و اثر هال:

اینجا هم خوب توضیح داده شده.

این ویدیو رو ببینید:

شنیدن سخنرانی کاسترلیتز در مورد زندگی علمیش خالی از لطف نیست!

Link: universite-paris-saclay-fr

– گفت‌وگو در مورد فیزیک ماده چگال (سخت)

این نوشته از دکتر ابولحسن واعظی که در مجله تکانه منتشر شده است را به علاقمندان به ماده چگال سخت پیشنهاد می‌کنیم:

نشریه‌ی-تکانه-شماره‌ی-۲۹

نور: یه چیزی بیییییییییینِ موج و ذره :)

سلام،

خُب این اولین پُست من در اینجا است. در واقع اولین پُست اینترنتی من به این شکل. کمی در گوپس (g+) می‌نویسم، اما به طور کلی اهل نوشتن در دنیای مجازی نیستم. این بار هم عباس به من گفت که بنویسم. قرار شد کمی درباره‌ی آزمایشی که کمی پیش‌تر انجام شد بنویسم. در واقع باید خیلی زودتر می‌نوشتم اما نشد.

خُب قضیه چیه؟ در یک خط بخوایم بگیم داستان این است که برای اولین بار به طور هم‌زمان ویژگی ذره‌ای و موجی نور دیده شده!

برگرفته از سایت دانشگاه پلی تکنیک لوزان
برگرفته از سایت دانشگاه پلی تکنیک لوزان

بگذارید برگردیم عقب. در زمان جناب نیوتون و فرما نور، به عنوان یک سری ذره دیده می‌شد، اینکه میگم دیده می‌شد یعنی منظر عمومی و علمی و نه «دیدن با چشم». این طور فکر می‌شد که نور از یک سری ذره تشکیل شده که در جهت مستقیم حرکت می‌کنند و با برخورد با سطحی یا عبور می‌کنند و یا بازتاب می‌شوند. قانون اسنل-دکارت هم به ما می‌گه که اگر ذرات بخواهند بازتاب پیدا کنند، با همون زاویه‌ای که نسب به خط عمود به سطح تابیده شدند، بازتاب می‌شوند و اگر هم عبور کنند بسته به سرعت نور در دو محیط زاویه در محیط دوم تعیین میشه(همون قانونی که توش سینوس و زاویه و اینا داره:) ). اگر اصل جناب فِرما رو هم بپذیرید هر دو قانون به‌دست می‌آیند. اصل این است که نور مسیری رو طی می‌کنه که کمترین زمان رو سپری کنه. یعنی می‌خواد زود به مقصد برسه. با کمی ریاضیات و هندسه هر دو قانون با این اصل اثبات می‌شوند. خُب، همه چیز خوب بود و عدسی‌ها، تلسکوپ‌ها و میکروسکوپ‌ها هم ساخته شدند. بخش 26 نوشته‌های فاینمن را می‌تونید بخونید.

اما این نوع نگاه به نور همه چیز رو توضیح نمی‌داد! برای نمونه پراش رو توضیح نمی‌داد. در آزمایش پراش شما یک روزنه‌ی باریک دارید که نور به علت عبور از این روزنه‌ی کوچک طرحی روشن-تاریک روی صفحه‌ی نمایش درست می‌کنه. اگر یک لیزر داشته باشید(فکر می‌کنم همین لیزرهای کوچک دستی هم کار را راه بیاندازد) و آن را به یک تار مو بتابانید روی دیوار یک طرح روشن و خاموش می‌بینید. اینجا تار جای روزنه است و هوای بیرون جای فضایی که روزنه روی آن تشکیل شده بوده! درست است برعکس است! اینجا نور از همه جا جز تار مو به دیوار می‌رسد، اما در حالتی که روزنه داریم، فقط از روزنه نور می‌رسد. اما نتیجه در کُل یکسان است. بخش 30 نوشته‌های فاینمن را می‌تونید بخونید.

این آزمایش و به نظر کارهای دیگر فیزیک‌دانان رو وادار کرده بود تا تئوری موجی رو آماده کنند. در این بین آزمایش دوشکافی یانگ هم خیلی تاثیر

آزمایش دوشکاف یانگ - برگرفته شده از صفحه ویکی‌پدیای این آزمایش
آزمایش دوشکاف یانگ – برگرفته از صفحه ویکی‌پدیای این آزمایش

گذاشت. در این آزمایش روی یک دیواره‌ی مات دو شکاف ایجاد می‌کنند. از یک منبع، نور به سمت این دو شکاف تابیده می‌شود و پس از عبور از دو شکاف نور به پرده می‌رسد. برای اینکه آزمایش رو بفهمیم اول بیاید حالت تک شکاف رو در نظر بگیریم. فرض هم می‌کنیم پراش نداریم. یعنی لبه‌ی روزنه‌ای که درست کردیم دست به نور نمی‌زنه. انتظار داریم که روبروی روزنه بر روی پرده نور یک بخش روشن داشته باشیم و همین طور آرام آرام با دور شدن از آن، شدت نور کم بشه. حالا اگر دو تا از این روزنه‌ها داشته باشیم چی؟ خُب انتظار می‌ره که دو تا از این روشنی‌ها داشته باشیم. یعنی یکی روبروی روزنه‌ی اول و یکی دیگه روبری روزنه‌ی دوم. بقیه‌ی جاها هم به تناسب فاصله‌شون کمتر  و کمتر روشن باشند. اما در کمال تعجب یک سری موجود روشن و خاموش می‌بینیم! اینکه یک جاهایی کاملن تیره باشند، یعنی اصلن انگار نه انگار که نور تابیده شده عجیبه واقعن!!! بخش 29 از نوشته‌های فاینمن را می‌تونید بخونید.

اینجا است که تئوری موجی نور خیلی خودنمایی می‌کنه. اگر شما در نظر بگیرید که دو جبهه‌ی موج دارید، یکی از روزنه‌ی اول و یکی از دوم، این دو جبهه می‌تونن به صورت هم‌فاز یا ناهم‌فاز به هم برسند، پس می‌تونند بر شدت هم بیافزایند یا کم کنند، می‌تونند برای هم مفید باشند یا مخرب. پس یه جاهایی روشنایی زیاد میشه و یک جاهایی تاریک!

در ادامه‌ی قرن نوزدهم با توسعه‌ی الکترومغناطیس و نوشته شدن معادلات ماکسول، مشخص شد که برای نور میشه یک توصیف موجی پیدا کرد. ماکسول نشون داد که نور در معادله‌ی موجی صدق می‌کنه که در مکانیک و صوت می‌شناختند. پس نور موج است! از طرفی همون معادلات تمامی آنچه در دنیای ذره‌ای هم بود رو توصیف کردند. یعنی قانون بازتاب با زاویه‌ی یکسان با تابش و قانون اسنل-دکارت از دل توصیف موجی و معادلات ماکسول بیرون اومد. پس دیگه همه چیز به نظر خوب می‌رسید، تمامی آزمایش‌ها با توصیف جدید می‌خوند و همه خوشحال. پس نور موج بود.

اما کمی که گذشت ورق برگشت. آزمایشی انجام شد به نام فوتوالکتریک .

نموداری از تابش الکترون‌ها از یک صفحهٔ فلزی. این امر زمانی رخ می‌دهد که انرژی واردشده توسط فوتون داخل‌شونده بیش از تابع کار ماده باشد. - برگرفته شده از ویکی‌پدیا
نموداری از تابش الکترون‌ها از یک صفحهٔ فلزی
برگرفته از ویکی‌پدیا

در این آزمایش نور به یک ورقه‌ی رسانا تابیده می‌شود. اگر شرایطی مهیّا باشد، الکترون‌ها از ورقه کنده می‌شوند. اگر این برگه به پتانسیل صفر بسته شده باشد، و در جایی دیگر پتانسیل مثبت باشد، الکترون‌ها به سمت پتانسیل مثبت می‌روند و به این ترتیب آشکار می‌شوند. بر اساس تئوری الکترومغناطیس اگر شدت نور به اندازه‌ی کافی زیاد باشد، باید الکترون‌ها از ورقه کَنده شوند. طبق این پیش‌بینی فرکانس نور تابیده اهمیت ندارد. در این صورت در هر فرکانسی اگر شدت نور به اندازه‌ی کافی زیاد شود باید بتوان الکترون را کَند. اما در آزمایش خلاف این دیده شد. شدت به هیچ وجه مهم نیست! فرکانس مهم است! فرکانس نور تابیده باید از حدی بیشتر باشد تا الکترون‌ها کَنده شوند و به سمت پتانسیل مثبت حرکت کنند. انیشتین پدیده را با توصیف ذره‌ای از نور توجیه کرد. این یکی از مقالات مهم 1905 انیشتین است. خودش فکر می‌کرد که دیگه هیچ وقت کسی به این آزمایش و مقاله برنمی‌گرده اما خُب هم به خاطرش نوبل گرفت و هم بی‌شک در چارچوب فکری فیزیک‌دانان تاثیر شگرفی گذاشت. اما توجیه چی بود؟ توجیه این است که نور از بسته‌های انرژی تشکیل شده. هر بسته انرژی مشخصی داره که رابطه‌ی خطی با فرکانس داره. به این ترتیب انرژی نور کوانتیده است و ضریب صحیحی از انرژی بسته‌ها است. به این ترتیب این شدت نیست که اهمیت داره، بلکه فرکانس نور است. جالب اینجا است که پس از توسعه‌ی تئوری کوانتوم این بسته‌های نور بهتر شناخته شدند و مشخص شد هر کدام انرژی و تکانه‌ی مشخصی دارند و این بسیاری از پدیده‌های بعدی در دنیای کوچک مقیاس رو توصیف کرد. این بسته‌های کوچک، این ذرات نور رو فوتون می‌نامند. بخش‌های 37 و 38 از فاینمن را ببینید.

خیلِ خُب… تا اینجا دیدیم که هرجایی یک نوع نگاه به نور به ما کمک می‌کنه تا پدیده رو توصیف کنیم. اما آیا می‌تونیم آزمایشی انجام بدیم که هم‌زمان هر دو جنبه رو نشون بده؟

الآن جواب این سوال بلی است. در دانشگاه پلی‌تکنیک لوزان اومدند و یک پرتو نور رو به یک نوار نازک رسانا تاباندند. به این ترتیب یک موج ایستا از نور در داخل این سیم نازک درست کردند. خُب پس موج داریم، اما یادمون باشه که این نور جنبه‌ی ذره‌ای هم داره. اما سوال مهم‌تر اینکه اصلن چه طور نور رو ببینیم؟ ما همیشه با نور همه چیز رو می‌بینیم. چه‌طوری نور رو ببینیم؟ خُب با الکترون. میکروسکوپی وجود داره که با الکترون کار می‌کنه!

حالا چه کردند؟ این دوستان  اومدند و یک سری الکترون رو تابوندند به این سیم نازک. الکترون‌ها بسته به اینکه به کجای موج ایستاده برخورد کنند سرعت‌شون زیاد یا کم میشه. با یک میکروسکوپ خیلی سریع می‌تونند جای این اتفاق رو مشخص کنند. به این ترتیب حالت موجی نور رو می‌بینند.

اما حالت ذره‌ای چه‌طور؟ حالا بیاید فرض کنیم که جای موج اونجا یک سری فوتون هستند. وقتی الکترون به سیم برخورد کنه با این فوتون‌ها برخورد می‌کنه.  اما انرژی و تکانه در این برخوردها کوانتیده است! یعنی ضریبی صحیح از فرکانس موج ایستاده است که توی سیم است. پس به این ترتیب با توجه به این کوانتیده بودن بعد از برخورد هم الکترون هر انرژی‌ای نمی‌تونه داشته باشه. انرژی‌ای که به الکترون از طریق این فوتون‌ها می‌رسه کوانتیده است! یعنی انرژی الکترون‌ها بعد از برخورد رو اگر اندازه‌گیری کنیم، می‌بینیم که تغییراتش ضریبی از همون بسته‌های انرژی فوتون‌ها است. این کاری است که انجام دادند! یعنی انرژی الکترون رو بعد از عبور از سیم اندازه‌گیری کردند و دیدند که اختلافش با مقدار اولیه همون بسته‌ها است. به این ترتیب برای اولین بار تونستند هر دو جنبه‌ی نور رو در یک آزمایش نمایش بدهند.

این ویدئو رو ببینید: