چندوقت بود میخواستم راجع به این «گربهی شرودینگر» یه چیزی بنویسم، بگم چیه و ماجرای مطرح کردنش چیه تا اینکه کاملا تصادفی، بین ویدئوهای Ted-ed یه ویدئوی خوب دیدم. سورپرایز خیلی خوبی بود! برای همین شروع کردم به تهیهی زیرنویس فارسی برای اون ویدئو تا توی سیتپور منتشرش کنم و همه با هم ببینیمش و کلی کیف کنیم 😉
ماجرا از اینجا شروع میشه که ما همهجا با تقارن سروکار داریم. از ساختار بدن خودمون گرفته تا اشکالی که توی طبیعت هست، معماریهای قدیمی و مدرن،فرش زیرپامون، وسایلی مثل تلفن همراه و … . تقارن توی هنر ارزش خاصی داره مخصوصا توی هنر اسلامی. اکثر مساجد درون و بیرونشون کاملا متقارن ساخته میشه! پپیشنهاد میکنم نوشتهی «گفتگو با استاد» از کتاب «اطاق آبی» سهراب سپهری رو بخونید! توی این نوشته، سپهری در مورد تقارن در نقاشی با یکی از اساتیدش بحث میکنه.
توی ریاضیات و فیزیک هم تقارن اهمیت خاصی داره، یکی از کارهای فیزیکدانها پیدا کردن تقارنه! هر چند که شکستن تقارن هم خودش یه موضوع خیلی جالب و چالشی هست ولی موضوع این پست نیست. همینطور برای فیزیکدانها اهمیت داره که بدونند که چه چیزهایی ثابت هستند و به بیان بهتر، فیزیکدانها دوست دارند بدونند که چه کمیتهایی پایسته (پایستار) هستند. حتما اسم قانونهایی مثل پایستگی انرژی به گوشتون خورده حتی اگر اهل فیزیک نباشید!
حالا با این مقدمهای که گفتم فکر کنید که یک نفر پیدا بشه و «تقارن» و «پایستگی» کمیتها رو به هم متصل کنه! چه اتفاق فرخندهای خواهد شد! این کار رو خانم امی نودر ریاضیدان تاثیرگزار آلمانی در سال ۱۹۱۵ انجام داد، چیزی که به عنوان قضیهی اول نودر امروز فیزیکدانها میشناسندش. سال ۱۹۱۵ دیوید هیلبرت و فلیکس کلاین از نودر دعوت کردند تا به دانشکدهی ریاضی دانشگاه گوتینگن بیاد و به اونها توی فهم نسبیت عام که توسط اینشتین مطرح شده بود کمک کنه.
همینطور که میدونید نسبیتعام یک نظریهی هندسی از گرانشه و بعضیها بر این باورند که اگر اینشتین نسبیتعام رو کشف نمیکرد، حتما توسط آدمهایی مثل هیلبرت و امثال هیلبرت این نظریه کشف میشد؛ با این وجود ریاضیدانها، فیزیک نمیدونستند و سرانجام افتخار این کشف به آینشتاین رسید! دعوت از نودر حاشیههای زیادی هم به همراه داشت، از جمله اینکه در اون زمان حضور زنها در دانشگاه مخالفان زیادی داشت ولی هیلبرت محکم جلوی این طرز تفکر نادرست ایستاد و از نودر به خوبی حمایت کرد! قضیه نودر، سال ۱۹۱۵ بیان و اثبات شد ولی نودر تا سال ۱۹۱۸ از انتشار اون خودداری کرد. بعد از این که کار نودر به دست اینشتین رسید، اینشتین نامهای به هیلبرت مینویسه و توی اون میگه:«دیروز مقالهای بسیار جالب در مورد ناوردایی از خانم نودر دریافت کردم. من از اینکه این چیزها با این کلیت قابل فهم هستند تحت تاثیر قرار گرفتهام! پاسداران قدیمی گوتینگن باید از خانم نودر درس بگیرند، به نظر میرسد که او کارش را بلد است!» جالبه که بدونید آدمهایی از جمله اینشتین، نودر رو مهمترین خانم در تاریخ ریاضیات خطاب کرده اند!
قضیه نودر بیان میکنه که:
«برای هر تقارن (پیوسته)موجود در یک سامانه، یک کمیت پایستار وجود دارد.»
این قضیه منجر به این شد که دو مقولهی ظاهرا متفاوت بهم متصل بشند و نتیجهی این وصلت هم، وصل شدن فیزیک نظری به سیستمهای دینامیکی و بالعکس شد. این قضیه یک ابزار بسیار قدرتمند برای فیزیک وحساب وردشهاست و در مکانیک لاگرانژی و همیلتونی (که فرمالیسمی مشابه با مکانیک نیوتونی هستند) کاربرد اساسی داره. در حقیقت واژهی «تقارن» در صورت قضیه به طور دقیقتری، اشاره میکنه به هموردایی فورمی که یک قانون فیزیکی نسبت به تبدلات گروه لی دریک بعد (با ارضا کردن شرایط فنی) داره. بد نیست بدونید که معمولا قانون پایستگی برای هر کمیت فیزیکی با یک معادلهی پیوستگی بیان میشه که خب مجال توضیحش توی این پست نیست! تغییر نکردن یک کمیت در اثر تحول سیستم (ناوردا باقی موندن) به معنی پایستگی اون کمیت هست و به بیان ریاضی اگر تغییرات یک کمیت نسب به زمان صفر باشه. اون کمیت ثابته: \( dA/dt =0 \)
اجازه بدید کمی تخصصی تر حرف بزنیم:
توی فرمالیسم مکانیک لاگرانژی برای سادگی بیشتر از مختصات تعمیم یافته استفاده میشه. اگر با مختصات تعمیمیافته آشنا نیستید نگران نباشید، ایدهی ساده ولی کاربردی هست، توی اکثر کتابهای درسی مکانیک کلاسیک (مکانیک تحلیلی) در موردش بحث شده؛ در حالت کلی مختصات تعمیم یافته، میتونند چیزهایی غیر از x,y,z باشند، مثلا زاویه! بعد از مشخص شدن مختصات تعمیم یافته، لاگرانژی به صورت اختلاف انرژی جنبشی و پتاسیل سامانه به صورت \(L=T-V , L=L(q,p, t) \) مشخص میشه. لاگرانژی تابعی از مختصات تعمیم یافته(q)، تکانهی تعمیم یافته (p) ( تکانه تعمیم یافته مشتق زمانی مختصات تعمیم یافته است) و احیانا زمان هم هست. با استفاده از لاگرانژی و استفاده از معادلهی اویلر-لاگرانژ میتونیم به راحتی معادلات حرکت رو به دست بیاریم.
منظور از qنقطه همون مشتق زمانی q یا تکانه تعمیم یافته (p) هست. اندیس k یعنی kامین مختصهی تعمیم یافته و… . حالا اگر تغییرات لاگرانژی نسبت به یکی از اون مختصات تعمیم یافته صفر باشه، یعنی طرف راست معادله صفر باشه ، اونموقع طرف چپ معادله هم صفر میشه و این یعنی تغییرات لاگرانژی نسبت به تکانهی تعمیم یافته ثابته!
خب حالا این یعنی چی؟!
مثال۱)فرض کنید که شما یک توپی رو به هوا پرتاب میکنید، مختصات تعمیم یافته توی این حالت، همون x,y,z در دستگاه دکارتی هست. برای این توپ لاگرانژی به صورت زیر نوشته میشه:همون جوری که میبینید توی این لاگرانژی خبری از y , x نیست! پس مشتق L نسبت به y یا x صفر هست که نتیجهش ثابت بودن مشتق L نسبت yنقطه (سرعت در جهت y) و xنقطه (سرعت در جهت x) هست. با حل معادله اویلر-لاگرانژ (حل کنید!) به این میرسیم که تکانه در جهت x , y ثابته: توی این مثال دیدیم که تکانه (حاصلضرب m در xنقطه یا yنقطه) در دو جهت پایسته بود و در صورت لزوم میتونیم از قانون پایستگی تکانه هم استفاده کنیم!
مثال۲)فرض کنید که یک ذره در پتانسیلی باشه که فقط به فاصلهش از محور z ها وابسته است، اونموقع اگر لاگرانژی رو در دستگاه مختصات استوانهای بنویسیم، خواهیم داشت: میبینید که توی لاگرانژی خبر از z و θ نیست. دوباره با حل معادله اویلر لاگرانژ به این نتیجه میرسیم که تکانه در جهت z و θ پایسته است که این به معنی ثابت بودن تکانهی خطی در جهت z و پایستگی تکانهی زاویهای در جهت θ هست.
خب ما توی این دو تا مثال به پایستگی دو کمیت به نامهای تکانهی خطی و تکانهی زوایهای رسیدیم. طبق قضیهی نودر چیزی که این کمیتهای پایسته رو بهوجود اورده، چیزی نیست جز تقارن! توی مثال اول تقارن توی صفحهی xy (صفحهی موازی سطح زمین)وجود داشت. یعنی اینکه فرقی نمیکرد که توپ ما در کجای این صفحه بود، مهم این بود که چقدر از زمین بالا یا پایین باشه، به عبارت دیگه تقارنی که در انتقال توپ ما در صفحه xy (یا در جهت x و جهت y) وجود داشت سبب پایستگی تکانهی خطی در جهت x,y شد! توی مثال دوم هم تنها چیزی که اهمیت داشت انتقال در جهت r یا همون جابه جایی از محور z بود و این اصلا مهم نبود که شما در جهت z یا در جهت θ انتقال یا جابهجایی انجام بدین. بنابراین به خاطر تقارن موجود در انتقال در جهت z ، پایستگی تکانهی خطی در جهت z و به خاطر تقارنی که در جهت θ بود پایستگی تکانهی زاویهای در جهت θ داشتیم. یعنی با استفاده از قضیه نودر،بدون حل معادله اویلر-لاگرانژ،میتونستیم کمیتهای پایسته رو از روی لاگرانژی تشخیص بدیم.
به طور خلاصه میتونیم این جدول رو داشته باشیم:
تقارن در زمان یعنی اینکه اگر رفتار سامانهی ما مستقل از زمان باشه به این معنی که هرچقدر زمان بگذره سیستم تغییر نکنه، اون موقع انرژی برای اون ثابت و پایسته است. برای مثال، وقتی شما نوسانگری که درخلا در حال نوسان با دورهی تناوب T هست رو امروز میبیند و دوباره فردا هم با همون دوره تناوب میبینیدش، یعنی اینکه انرژی برای این نوسانگر پایسته است!
خیلی چیزها خلاصه میشه توی همین قضیه! زمین گرده چون که بیشترین تقارن رو کره داره و این گردی سبب میشه که تکانهی زاویه ای حفظ بشه! همین طور مدار سیاره ها و …
خب در انتها جا داره که یک بار دیگه درود بفرستیم به امی نودر!
برای عمیقتر شدن نگاهی داشته باشید به این نوشته از وبلاگ تائو:
توی قسمت قبلی دیدیم که اگر هر تابع f رو داشته باشیم میتونیم برای اون تابع مجموعهی ژولیای مربوط به اون رو پیدا کنیم که خب یکمی از کامپیوتر هم کمک گرفتیم. کار ما این بود که یک تابع رو بر میداشتیم شرایط اولیهای (یک سری نقطه توی فضای مختلطی (موهومی)) بهش میدادیم، مقدار تابع رو به ازای اون شرایط اولیه به دست میاوردیم و همین طور دوباره این مقدار رو به تابع میدادیم و این روند رو ادامه میدادیم تا ببینیم آیا شرایط اولیهای که انتخاب کردیم به بینهایت میل میکنه یا نه، اگر نمیکرد اون موقع مجموعهی ژولیا اون تابع رو تشکیل میداد. همین طور گفتیم که از بین همهی توابع، توابعی که به صورت چندجملهای های مربعی میباشند بیشتر مشهور هستند؛ توابعی با فورم: $$f(z)=z^2 +c$$توی این پست در مورد علت این شهرت توضیح میدم؛
تابع ${f(z)=z^2 +c}$ رو در نظر بگیرید؛ فراموش نکنید که c میتونه هر عددی – ولی حتما مختلط – باشه. حالا اگر با نقطهی z=0 شروع کنیم، به این دنباله میرسیم:
$$ c , c² + c , (c²+c)² + c , ((c²+c)²+c)² + c , (((c²+c)²+c)²+c)² + c , …$$
اگر این دنباله واگرا نباشه، یعنی اگر c هایی انتخاب کنیم که در نهایت این دنباله به بینهایت نرسه اون موقع مجموعهی ژولیایی که توسط این cها برای تابع ${f(z)=z^2 +c}$ ساخته میشه، «همبند» هست. احتمالای توی نظریهی گراف با مفهموم همبند بودن آشنا شدین (معمولا سال آخر دبیرستان بچههای رشتهی ریاضی فیزیک نظریهی گراف رو توی درس ریاضیات گسسته میخونند!) اگر نشدین، همبند بودن یک جور مفهموم متصل بودن رو داره، وقتی یک گراف یا شبکهای همبند باشه اونموقع اگر شما از یک نقطهای شروع به حرکت کردید، میتونید به هر نقطهای که دلتون میخواد برید وبدون اینکه جایی مسیرتون قطع بشه. خلاصه این که اگر دنبالهای که ساختیم واگرا
نشد اون موقع ما یک مجموعهی ژولیای همبند میتونیم بسازیم. (اثبات این مطلب فراتر از حوصلهی ماست!) خب حالا این مجموعهی ژولیای همبند به چه دردی میخوره آیا؟! اجازه بدید تا یک مجموعهی جدید معرفی کنیم به نام «مجموعهی مندلبرو».
«مجموعه مندلبرو شامل نقاطی (c) از صفحهی مختلط هست که به ازای آن ها مجموعهی ژولیا تابع ${f(z)=z^2 +c}$ همبند باشد.»
شما میتونید یک برنامه بنویسید تا براتون مقادیری که C ممکنه بگیره رو پیدا کنه ولی یک نکتهای هست و اون اینه که همهی مجموعههای ژولیا همبند شامل نقطهی 0 = 0+ z= 0i هستند! بنابراین «اربیت» یا «چرخش» یا «تکرار» مبدا برای این دسته از مجموعه ها، همیشه باید یک مقدار کراندار باشه و به بینهایت میل نکنه، پس نقطهی صفر در همهی مجموعههای ژولیای همبند صدق میکنه. به طور مشابه در همهی مجموعههای ژولیای ناهمبند نقطهی صفر وجود نداره! خب این یک سنگ محکی شد برای تشخیص اینکه آیا نقطه c دلخواهی عضو مجموعهی مندلبرو هست یا نه! یعنی کافیه تا ما «اربیت» یا «چرخش» یا «تکرار» نقطهی z=0 رو برای تابع ${f(z)=z^2 +c}$ بررسی کنیم، اگر مقادیری که به دست میاند (همون «اربیت» یا «چرخش») کراندار باشند اون موقع اون c مورد نظر ما عضو مجموعه مندلبرو هست ولی اگر به بینهایت میل کنه اونموقع اون c دیگه عضو مجموعه مندلبرو نیست! شرمنده 😀
مجموعهی مندلبرو یکی از موضوعات دینامیک مختلطه که برای اولین بار ایدهش اوایل قرن بیستم توسط ریاضیدانان فرانسوی بهنام «فاتو» و«ژولیا» مطرح شد. اون موقعها هنوز کامپیوتر زیاد رونق نداشت برای همین مثلا فاتو نتونست شهود و تصویر خوبی از این مجموعه ارائه بده. تا اینکه مندلبرو اول مارس ۱۹۸۰(اواخر قرن بیستم!) به لطف کامپیوترهای شرکت IBM تونست این کار رو انجام بده و بعدش هم این موضوع رو گسترش زیادی داد. آدمهای زیادی بعد از مندلبرو روی این موضوع کار کردند ولی به خاطر خدمات مندلبرو یا به احترام مندلبرو، اسم این مجوعه رو «مجموعه مندلبرو» گذاشتند!
این مجموعه در حقیقت یک فرکتال هست با مرز بسیار بسیار پیچیده، جوری که شیشیکورا ثابت کرد (۱۹۹۸) که بعد این مرز ۲ هست! این فرکتال برخلاف مجموعهی ژولیا کاملا خودمتشابه نیست و اگر روی شکل زوم کنید این رو به راحتی متوجه خواهید شد!
همین طور این مجموعه توی صفحهی مختلط، توی دیسکی یه شعاع ۲ قرار میگیره و تقاطع اون با محور حقیقی بازه [۰/۲۵, ۲-] هست. حدودا دو سال پیش مساحت مجموعه مندلبرو 0.0000000028 ± 1.5065918849 واحدمربع تخمین زده شد! پیشنهاد میکنم حتما به صفحهی ویکی پدیای این مجوعه عجیب و غریب سر بزنید، مخصوصا اگر دوست دارید که الگوریتمهایی که برای تولید این دسته از فرکتالها مورد استفاده قرار میگیرند چه جوری هستند!
برای مطالعه، پیشنهاد میکنم کتاب زیر رو بخونید، خیلی خوب توضیح داده هم فرکتالها رو هم آشوب رو!
به عنوان حسن ختام، یک جمله از مندلبرو رو نقل میکنم (از سخنرانی تد ۲۰۱۰) : «خب، اجازه دهید تمام کنم. این شکل در اینجا تنها از یک تمرین در ریاضیات محض بوجود آمد. ظهور شگفتی های بی پایان از قواعد ساده، که بی نهایت تکرار می شوند.»
«حالا، اینجا چیز دیگری است که نسبتا جالب است. یکی از مخرب ترین رویدادها در تاریخ ریاضیات، که توسط بسیاری از مردم درک نشده، در حدود ۱۳۰ سال پیش رخ داده است، ۱۴۵سال پیش. ریاضیدانان شروع به خلق اشکالی که وجود نداشتند کردند. ریاضیدانان شروع به خودستایی کردند به حد مطلقا شگفت انگیزی که انسان بتواند چیزهایی را اختراع کند که طبیعت نمی دانست. به طور خاص، توانست چیزهایی اختراع کند مانند یک منحنی که صفحه را پر می کند. یک منحنی، منحنی است، یک صفحه، صفحه است، و این دو ترکیب نخواهند شد. خب، آنها ترکیب می شوند! مردی به نام پیانوچنین منحنی هایی تعریف کرد، و آن موضوع فوق العاده مورد علاقه واقع شد. آن موضوع بسیار مهم، اما بیشتر جالب توجه بود به دلیل یک نوع شکاف، یک جدایی بین ریاضیات آمده از واقعیت از یک طرف، و از طرف دیگر ریاضیات جدیدی که از ذهن ناب انسان آمده است. خب، من بسیار متاسف بودم برای تذکر اینکه ذهن ناب انسان در حقیقت، آنچه را برای یک مدت طولانی دیده شده بود بالاخره دیده است! و بنابراین من اینجا چیزی را معرفی می کنم، مجموعه ای از جریان های یک منحنی صفحه پر کن…»بنوآ مندلبرو (پدر هندسهی فرکتالی) ، سخنرانی تد ۲۰۱۰
توی پست دوم فرکتالها در مورد بعد (یا ناهمواری) غیرصحیح فرکتالها توضیح دادم. مثلا دیدیم که بعد برفدانهای که ساختیم ۱/۴۶ و بعد مثلث سیرپینسکی ۱/۵۸ به دست اومد. حالا فرض کنید که بعد از محاسبه بعد یک فرکتال، اون عدد دقیقا «۲» به دست بیاد! به نظرتون این چه معنی میده؟ اگر این اتفاق بیفته اون موقع فرکتال شما کل صفحه رو پر میکنه! یعنی به ازای هر نقطه از صفحه یک نقطه از فرکتال وجود داره. برای توضیح بیشتر اجازه بدید که وارد موضوع «خمهای فضا (صفحه) پر کن بشم»:
خمهای فضا پرکن:
خیلی از اوقات نیازه که مختصات فلان نقطه در فضا رو بدونیم. توی این جور مواقع،بسته به نوع مسئله، از دستگاه مختصاتی استفاده میکنیم که به کمک اون راحتتر بتونیم مختصات نقاط دلخواه رو مشخص کنیم. به عنوان مثال همهی ما از دستگاه مختصات دکارتی (کارتزی) توی دبیرستان استفاده میکردم. دستگاهی که برای مشخص کردن هر نقطه از فضا کافی بود فاصلهی فضایی اون نقطه از مبدا (همون x, y, z) رو بدونیم. یا مثلا همهی دانشجوهای فیزیک میدونند (یا باید بدونند!) زمانی که توی فضای ۳ بعدی با مسئلهی نیروی مرکزگرا مواجه میشند بهتره که از دستگاه مختصات کروی استفاده کنند. توی دستگاه کروی از دو تا زاویه و یک فاصلهی شعاعی استفاده میشه تا مختصات هر نقطه از فضا مشخص بشه. شاید رفتن از دستگاه دکارتی به کروی مسئله رو راحتتر کنه ولی چیزی که فرق نمیکنه اینه که برای توصیف هر نقطه در فضا چه در دستگاه دکارتی و چه در فضای کروی به ۳ تا پارامتر نیاز داریم و تعداد پارامترها تغییر نمیکنه! (اگر الان دارید به مختصات تعمیم یافته فکر میکنید اولا آفرین، ثانیا لطفا فعلا فراموشش کنید چون من میخوام یه چیز دیگه بگم!) حالا فرض کنید که یک خم با ابتدا و انتهای مشخص دارید. خم یک موجود یک بعدیه که توی یک فضای ۲ بعدی و یا بیشتر جا میشه و زیر مجموعهای از اون فضاست. شما میتونید خمتون رو تقسیم بندی کنید (مثل خط کش). اگر نقطهی ابتدایی خمتون رو مبدا در نظر بگیرید (انتخاب این نقطه اختیاری، هر نقطهی دیگهای رو میتونید در نظر بگیرید)، اون موقع مختصات (موقعیت) هر نقطهای از خم رو میتونید با استفاده از مبدا و تقسیم بندی که انجام دادید، داشته باشید! مثلا در فاصله ۳ سانتی متری نقطهی A و در فاصلهی ۲.۳۴ سانتی متری نقطهی B قرار داره. این نقاط یکتا هستند، به عبارت دیگه توی یک فاصلهی مشخص فقط یک نقطه پیدا
میشه! کاری که انجام دادیم این بوده که هر نقطه از خم رو فقط با «یک» پارامتر مشخص کردیم که خیلی کار خوبیه ولی متاسفانه یه مشکلی هست و اون اینه که ما با این کار فقط مختصات نقاطی که روی خم مورد نظر ما هستند رو تونستیم با یک پارامتر مشخص کنیم و برای بیان مختصات سایر نقاط فضا مجددا به پارامترهای بیشتری نیاز داریم( 🙁 ).
اینجا بود که شخصی به نام پیانو (Giuseppe Peano) تصمیم گرفت که خمی بسازه که کل فضا رو پر کنه، اون موقع میشه مختصات هر نقطه از فضا رو فقط با یک پارامتر مشخص کرد و این یعنی عالی!
راستش پیانو این ایده رو از کانتور ریاضیدان بزرگ آلمانی گرفته بود. چون که کانتور قبلا نشون داده بود که: «تعداد (بیشمار) نقاط در یک بازهی بسته برابر با تعداد تقاط در هر فضا با بعد محدوده». این جوری شد که خمهای فضا پر کن توسط پیانو ساخته شد و به خاطر همین به خمهای که فضاهای ۲ بعدی (صفحه) رو پر میکنند معمولا میگند خم پیانو. یک سال بعد از مطرح کردن خمهای فضا پر کن توسط پیانو، دیوید هیلبرت
خمهای فضا پرکن مختلفی رو ارائه داد که فکر کنم این موضوع با کار هیلبرت کامل شد تقریبا! نکته این بود که ریاضیدانها فکر میکردند چیزهایی ساختند که واقعا توی دنیا واقعی وجود ندارند و این از ذهن ناب بشر اومده. ولی همین جوری که مندلبرو گفت (ابتدای پست) ریاضیدانها فقط چیزی رو دیده بودند که برای مدتهای طولانی در طبیعت دیده شده بود! به این صفحه نگاه کنید، فرکتالهای مختلفی با بعد (ناهمواری)های مختلفی رو شامل میشه، از جمله اونهایی که بعدشون صحیح و فضا پر کن هستند!
فرکتالهای تصادفی:
به برفدانهی کخ برگردیم در قسمت اول. مطابق شکل چند مرحله از ساخت این برفدانه رو میبینیم. شیوه ساخت این فرکتال ابتدایی آسونه و قاعده هم داره! یعنی اینکه هر بلایی که سر یک ضلع بیاد سر بقیه اضلاع هم میاد و از اون مهمتر هر مرحلهای که برای ساخت پیش میریم از «یک» قاعده فقط پیروی میکنیم (اینکه هر پارهخط به ۳ قسمت مساوی تقسیم میشه، قسمت وسط دور ریخته میشه و دو قسمت هم اندازه با یکی از اون سه قسمت به شکل اضافه میشه.) در حقیقت ما با یک فرایند کاملا منظم، یک شکل عجیب (در نگاه اول!) رو میسازیم. در قسمت اول محیط و مساحت این فرکتال به راحتی حساب شد و همین طور با استفاده از رابطهای که توی قسمت دوم برای محاسبه بعد (ناهمواری) ارائه شد، بعد این فرکتال log۴/log۳ = ۱/۲۶ به دست میاد! پس این یک فرکتال منظم هست. حالا اگر اینقدر منظم پیش نریم چه اتفاقی میافته؟ برای مثال اگر در مرحلهی اول که دو قسمت برابر رو اضافه میکنیم و یک مثلث جدید میسازیم سر مثلث رو به بالا باشهو برای مرحلهی بعد سرمثلث ها رو به پایین باشه و همین جوری یک در میون عوض بشه اون موقع شکل از این نظم خارج میشه و دیگه توی هر مرحله با یک قاعده سر و کار نداریم. میشه باز بی نظمی رو بیشتر کرد. این دفعه هر مرحله رو که میخوایم انجام بدیم سکه بندازیم مثلا، اگر شیر اومد سر مثلث رو به بالا باشه و اگر خط اومد سر مثلث رو به پایین. با این کار (که هر مرحله مطابق با یک قاعدهی تصادفی ما فرکتال رو میسازیم) در نهایت به یک فرکتال غیر ابتدایی میرسیم که دیگه واقعا ساده نیست، اسم این فرکتال، فرکتال تصادفیه!
فرکتال های تصادفی بیشتر به شکلهایی که توی طبیعت هستند نزدیکند تا فرکتالهای غیر تصادفی. ولی خب یک سری پیچیدگی ها به این دسته از فرکتالها به خاطر تصادفی بودنشون اضافه میشه که بررسی کامل اونها از حوصله شما و سواد من احتمالا خارجه و نیاز به نظریههای پیشرفته احتمالات داره. با این وجود فقط به چند نکته دربارهی این دسته از فرکتالها اشاره میکنم؛
اول اینکه ایندسته از فرکتال ها دیگه دقیقا خودمتشابه و قطعه های کوچیکتر دقیقا مثل کل شکل نیستند! با این وجود شباهت زیادی هنوز وجود داره. به همین خاطر میگند فرکتالهای تصادفی، به طور آماری خودمتشابه هستند. حقیقت هم اینه که واقعا طبیعت رو باید آماری بررسی کرد، خوشبختانه یا متاسفانه!
از طرف دیگه به خاطر اینکه فرکتالهای تصادفی به طور آماری خودمتشابه هستند دیگه محاسبهی بعد (ناهمواری) برای این دسته از فرکتالها به این راحتی ها نیست! بعد یک فرکتال غیر تصادفی با بعد همون فرکتال ولی با ساختار تصادفی ممکنه برابر یا نابرابر باشه.
مثلا برفدانهی کخ و برفدانهی تصادفی کخ هر دو داری بعد log۴/log۳ = ۱/۲۶ هستند ولی لزوما در مورد بقیه فرکتالها این برابری وجود نداره!
نکته: فرکتالهای غیرمعمولی تصادفی نیستد!
درسته که فرکتالهای تصادفی شکل عجیب و غریبی دارند ولی هر فرکتالی که شکلش برای ما عجیب به نظر برسه لزوما تصادفی نیست؛ ممکنه با یک قاعدهی منظمی ساخته شده باشه که به نظر ما تصادفی برسه! کافیه که شکلتقارن خوبی نداشته باشه یا اینکه قاعدهی ساختش یکمی پیچیده باشه اون موقع به راحتی میشه گول خورد! پس مواظب باشید که گول ظاهر فرکتالها رو نخورید 😀 مثلث و فرش سیرپینسیکی میتونند با یک شکل غیرعادی ظاهر بشند، درصورتی که با یک قاعدهی کلی ساخته شدند. هر چند که اینها تقارن خوبی ندارند ولی تصادفی نیستند!
بازی آشوب:
فرض کنید یک مثلث با رئوس A , B , C داریم. یک نقطهی دلخواه داخل این مثلث انتخاب میکنیم و اسمش رو میذاریم نقطهی 0. بعد تاس میریزیم و بسته به این که عددی که اومدی چنده به طرف یکی از رئوس حرکت میکنیم، جوری که مثلا اگر عدد ۱ یا۲ اومد به سمت راس A، اگر عدد ۳ یا ۴ اومد به سمت راس B و اگر ۵ یا ۶ اومد به طرف راس C حرکت میکنیم. فرض کنید که عدد تاس ۲ هست، پس به طرف راس A حرکت میکنیم و بین نقطهی 0 و راس A نقطهی 1 رو مشخص میکنیم. (خط واصل نقطهی 0 و راس A رو رسم میکنیم و وسط این پاره خط رو 1 نام گذاری میکنیم.) مجددا تاس میریزیم و بسته به این که چه عددی بیاد دوباره مثل قسمت قبل به سمت راس مطلوب میریم و بین اون راس و نقطهی 1 رو 2 نام گذاری میکنیم. برای مثال اگر توی این مرحله عدد تاس ۵ باشه باید نقطهی 1 رو به راس C وصل کنیم و وسط این پاره خط رو 2 نام گذاری کنیم. اگراین کار رو همین جوری ادامه بدیم نقاط مختلفی داخل مثلث ایجاد میشه که فعلا به ظاهر چیز به دردبخوری نیستند! ولی اگر این کار رو ۱۰۰ بار یا ۱۰۰۰ بار یا ۱۰۰۰۰۰ بار انجام بدیم به یک شکل آشنا میرسیم، به شکل نگاه کنید:
خب این فوقالعاده جالبه! ما با استفاده از یک فرایند کاملا تصادفی (شانسی) به یک چیز کاملا مشخص رسیدیم! این برای شما عجیب نیست؟ ما کاملا الله بختکی تاس ریختیم و نقطه گذاشتیم و رسیدیم به مثلث سیرپینسکی! بازی آشوب اثبات تحلیلی خوبی داره که به نظرم گفتنش اینجا ممکنه حوصلهتونو سر ببره!
بازی آشوب به ما نشون داد که یک سیستم دینامیکی تصادفی میتونه منجر به نتایج مشخصی بشه و به عبارت دیگه از دل یک فرایند کاملا نامنظم، نظم به وجود میاد! نکتهی قابل توجه اینه که اگر ما شانس (تاس ریختن و انتخاب تصادفی هر راس) رو کنار بذاریم و از یک فرایند مشخص استفاده کنیم، مثلا ABCABCABC…اون موقع دیگه به مثلث سیرپینسکی نمیرسیم! چیزی که خیلی جالبتره اینه که هرشکلی (چه فرکتالی چه غیرفرکتالی) رو میشه به کمک یک بازی آشوب یا یک بازی آشوب تعمیم یافته ساخت!
توی بازی آشوب تعمیم یافته از تبدیلات آفین استفاده میشه. (تبدیلات آفین تبدیلاتی هستند که خطوط موازی هر شکل رو پس از تبدیل موازی نگه میدارند). هر حرکت توی بازی آشوب تعمیم یافته یک تبدیل آفینه و شما به کمک این بازی میتونید هر شکلی رو که دوست دارید بسازید! به همین سادگی، به همین خوشمزگی! مثلا با یک بازی آشوب تعیمیم یافته با و استفاده از چهارتا تبدیل آفین میشه یک سرخس ساخت!
این پست رو با اشاره به یک قضیه به پایان میبرم؛
قضیهی کلاژ: «برای هر شکلی با هر هندسهای میتوان یک بازی آشوب ساخت که آن شکل را تولید کند.».
این قضیه (و بازی آشوب) پل بین بینظمی و نظم هست. شما از هرج و مرج به نظم و از نظم میتونید به هرج و مرج برسید! از کاربردای دیگهی این قضیه فشرده سازی تصاویره. فرض کنید که شما یک فایل تصویری حجیم رو میخوایید که برای کسی ایمیل کنید و اینترنت خوبی ندارید یا اینکه میخوایید از یک شبکهی ضعیف ردش کنید؛ کافیه به جای تصویر، با استفاده از قضیه کلاژ، بازی آشوبی که اون رو تولید میکنه (چند خط کد که کامیپوتر براتون میسازه) بفرستید و شخصی که این بازی رو دریافت میکنه با اجرا کردنش میتونه به تصویر مطلوب برسه!
پیشنهاد میکنم فیلم «آشوب (۲۰۰۶)» رو ببینید!فیلم علمی نیست ولی توش در مورد بینظمی و اینا حرف زده میشه که ممکنه براتون جالب باشه! به نقل از ویکی پدیا: «داستان دربارهی یک گروه سارق مسلح است که به بانکی حمله کرده و از حساب فردی سرقت میکنند. پلیسانی که به دنبال این افراد هستند عبارتند از یک مامور ابقا شده (زیرا سارقان بانک فقط چنین بازرس معلق شدهای را قبول دارند، با بازی جیسون استاتهام) و دستیارش که فرزند یک پلیس اسطورهای است. دستیار متوجه می شود که سارقان به طور رمزی از نظریه آشوب حرف میزنند و با دقت بیشتری تمام مدارک را بررسی میکند تا به این نتیجه میرسد که باید به دنبال چه افراد سابقداری برود. او متوجه میشود هدف آنها سرقت یک میلیارد دلار پول بوده که از طریق ویروسهای کامپیوتری دزدی شده است …»
معمولا کتاب هایی که بیانگر زندگی افراد تاثیر گذار هستند رو دوست دارم، به شرطی که نویسندهش قصد کاسبی نداشته باشه! از طرفی خیلی وقته که سراغ فیزیک اومدم، برای همین سعی کردم کتابهایی که انتخاب میکنم معطوف به فیزیکدان ها و ریاضیدان ها باشه. کتاب «دنیایی که من می بینم» نوشته آینشتین رو خوندم جالب بود. یک سری کتاب دیگه هم هست که فیزیکدان ها نوشته باشند: «جز و کل» نوشتهی هایزنبرگ، «زندگی چیست؟» نوشتهی شرودینگر و … همین طور چند تا فیلم خوب هم پیدا کردم؛ یکیشون «ذهن زیبا» داستان زندگی جان نش ریاضیدان برنده نوبل اقتصاد بود. یکی هم «آینشتاین و ادینگتون» که ماجرای نسبیت رو به تصویر میکشید و آخری هم فیلم «فاجعهی چلنجر» ماجرای انفجار شاتل چلنجر و بررسی اون فاجعه توسط ریچارد فاینمن بود! دیدن این سه تا فیلم رو به علم (به ويژه فیزیک) دوستان پیشنهاد میکنم.
اخیرا کتاب «حتما شوخی میکنید آقای فاینمن!» Surely You’re Joking, Mr. Feynman!”: Adventures of a Curious Characterرو خوندم! فوق العاده بود! ماجرای زندگی فاینمن به روایت خودش! اطلاعی در مورد ترجمهی کتاب ندارم ولی شنیدم که این کتاب با مشخصات: «ماجراجوئیهای فیزیکدان قرن بیستم ریچارد فاین من/ رالف گیل تون؛ مترجمین توراندخت تمدن (مالکی)، اردوان مالکی/ مشخصات نشر: تهران: علم، ۱۳۸۲» خیلی وقت پیش ترجمه شده (من توی بازار ترجمه شده ش رو ندیدم تاحالا، اگه هم باشه احتمالا هرس شده!) [دانلود کتاب]
فاینمن برنده جایزه نوبل فیزیک و همین طور جایزه های مهم دیگه ای هست و بیان اینکه فاینمن جزو ده فیزیکدان بزرگ کل تاریخه جفا نیست؛ اما چیزی که سبب شده تا فاینمن اینقدر محبوب بشه هیچکدوم از این ها نیست! فاینمن جذاب و دوست داشتنی بود و هست چون که یک معلم فوق العاده بود و شخصیت جالبی داشت. درس گفتارهای فاینمن کماکان از بهترین دوره های فیزیکه! در مورد بقیه آثار فاینمن به صفحهی ویکی پدیا فاینمن رجوع کنید! کتاب «حتما شوخی میکنید آقای فاینمن!» ماجرای زندگی فاینمن رو از دوران کودکی تا زمانی که جایزه نوبل رو میگیره شامل میشه (بقیهی زندگی فاینمن توی کتاب «چه اهمیتی داره که مردم چی فکر میکنند؟» نوشته شده! اونم کتاب خوبیه، ولی به جذابیت این نیست!). «حتما شوخی میکنید آقای فاینمن!» جزو اون دسته از کتابهاییه که واقعا جذابه، جوری که شما همهش دوست دارید ببینید بعدش چی میشه! قول میدم خوندن این کتاب حسابی هیجان زده تون کنه!
امروزه من تقریبا انتظار دارم که همه coursera رو بشناسند. نهادی که با تلاش چند نفر از اساتید دانشگاه استنفورد، مثل Daphne Koller ایجاد شد، تا به همهی افراد جهان فرصت یادگیری بهتر رو ارائه کنه. مطمئنا آیندهی نوع بشر به این حرکت افتخار خواهد کرد. (این سخنرانی Daphne Koller توی تد رو از دست ندید.)
بهونهای که باعث شد اینجا در موردش بنویسم، این کلاس جدید بود: «از مهبانگ، تا انرژی تاریک». البته به نظر میرسه که این کلاس بیشتر جنبهی اطلاعات عمومی سطح بالا داشته باشه، تا یه کار آکادمیک. اما برای کسانی که فیزیک رو حرفهای دنبال نمیکنن گزینهی بینظیر و جذابیه.