رفتن به نوشته‌ها

دسته: مکانیک آماری

آنیون‌ها و آمار کوانتومی در ۲-بعد

﷽ توی فیزیک، بسته به شرایط مسئله‌ای که مطالعه می‌کنیم، به یه سری چیزها می‌تونیم بگیم ذره. از یک نگاه، فیزیک چیزی نیست جز بررسی ذرات و میدان‌ها. کیهان‌شناس‌ها به منظومه شمسی میگن یه ذره! به عبارت دیگه در فیزیک بسته به مقیاس، وقتی میگن ذره، لزوما منظور شی کوچیکی نیست وقتی با چشم بهش نگاه می‌کنیم. فقط در حوزه «فیزیک ذرات» یا «فیزیک انرژی بالا» مردم منظورشون از ذره معمولا ذرات بنیادیه. تعریف دم‌دستی از ذره بنیادی هم یه چیزیه که ساختار ریزتری نداره؛ مثلا ما ساختار ریزتری برای الکترون نمی‌شناسیم گویا. اما در مورد نوکلئون‌ها (پروتون و نوترون)، اونا رو می‌تونیم با کوارک‌ها بسازیم. پس الکترون و کوارک ذره بنیادی حساب میشن اما پروتون نه. از طرف دیگه، منظور ما از یک «ذره کوانتومی» یا به‌طور کلی یک «پدیده کوانتومی» اینه که فیزیک کلاسیک در توصیف رفتار اون ذره یا پدیده ناکافی یا ناکارآمده و اصطلاحا باید در یک رژیم کوانتومی به دنبال توصیف مناسب بگردیم.

کهکشان‌ها به قدری بزرگ هستند که به ستاره‌ها بشود عنوان یک «ذره» را نسبت داد!
این نوشته از کوانتا مگزین را بخوانید.

حالا اگه علاقه‌مند به مطالعه سیستم‌های بس‌ذره‌ای کوانتومی باشیم، یعنی بخوایم بدونیم که مجموعه‌ای از ذرات کوانتومی با یک مدل برهمکنشی خاص چه‌طوری رفتار می‌کنن اون موقع فیزیک آماری کلاسیکی که برای سیستم‌های بس‌ذره‌ای بلدیم باید قاعدتا به یک نسخه‌ کوانتومی تغییر کنه. در دنیای کوانتومی، ذرات به دو گروه فرمیون‌ها و بوزون‌ها تقسیم میشن. این طبقه‌بندی در دنیای کلاسیک اصلا نیاز نیست. به خاطر این طبقه‌بندی جدید ذرات، وقتی نیاز داشته باشیم که یک سیستم‌ کوانتومی رو به طور آماری بررسی کنیم، باید دقت کنیم که در بررسی اجزا اون سیستم با دو آمار مختلف رو به رو هستیم. یک آمار ویژه فرمیون‌ها به نام «آمار فرمی-دیراک» و یک آمار ویژه بوزون‌ها به نام «آمار بوز-اینشتین». پس منظور از «آمار کوانتومی» مجموعه‌ای از ذرات، یک بررسی فیزیک آماری کوانتومی از اون سیستمه.

یک سری چیزها مثل پروتون، نوترون و الکترون پیرو آمار فرمی-دیراک هستن. این‌ها ذراتی هستن که اسپین‌هاشون کسریه و مضرب یک‌دوم، به اینا میگیم فرمیون. اصل طرد پائولی هم فقط برای فرمیون‌ها برقراره. اصل طرد هم یک جور فاصله‌گذاری اجتماعی بین ذراته! یکی از نتایج اصل طرد اینه که برای داشتن ماده (به معنی اکثر ساختارهای فیزیکی که اطرافمون هست) باید فرمیون‌ها رو کنار هم قرار بدیم و نه بوزون‌ها رو. چون اجتماع فرمیون‌ها منجر به ساختارهای گوناگونی میشه که منجر به ایجاد ماده‌های مختلفی میشن. اما اجتماع بوزون‌ها این شکلی نیست!

مثلا فوتون که کوانتا (ذره) سازنده نوره یک بوزونه و از آمار بوز-آینشتین پیروی می‌کنه. اسپین بوزون‌ها صحیحه و اصل طرد برشون حاکم نیست. به همین خاطر میشه تعداد زیادی فوتون رو جایی جمع کرد بدون اینکه ساختار خاصی شکل بدن. به این کار اصطلاحا میگن چگالش بوز-آینشتین. در نگاه «فیزیک ذرات» برای توصیف هر پدیده‌ای علت رو میندازن گردن یه «ذره»؛ به عنوان مثال، دو تا جسم جرم‌دار رو تصور کنید که به خاطر گرانش بهم نیرو وارد میکنن. در نگاه فیزیک کلاسیک، گرانش انگار پیوسته بین دو جسم وجود داره و سبب میشه که این دو جسم بهم نزدیک بشن. مثلا زمین همیشه داره به خورشید نزدیک میشه به خاطر جاذبه گرانشی، ولی به جای اینکه سقوط کنه روی خورشید دورش میچرخه. حالا سوال اساسی اینه که این برهمکنش چه‌طور انجام میشه؟ از نگاه فیزیک ذرات، این برهمکنش گرانشی با تبادل ذره‌ای به اسم گراویتون بین خورشید و زمین انجام میشه. هنوز از لحاظ تجربی گراویتون مشاهده نشده، اما انتظار میره در صورت مشاهده، بوزونی بی‌جرم اسپین-۲ باشه!

بوز یک فیزیکدان هندی بود. قطار سوار شدن هندی‌ها رو به عنوان چگالش بوز-آینشتین در نظر بگیرید!

خلاصه تا این اواخر ما فکر می‌کردیم که ذرات کوانتومی یا باید فرمیون باشن یا بوزون و وقتی به یک سیستم کوانتومی نگاه می‌کنیم فقط با دو جور آمار روبه‌رو هستیم.

در فیزیک یک طبقه‌بندی دیگه‌ای هم وجود داره که به بعضی چیزها به جای ذره، میگیم شبه‌ذره یا Quasi-particle. این‌ها در حقیقت موجوداتی هستن که از برانگیختگی‌ میدان‌ها بیرون میان، مثل فنون‌ها. در فیزیک ماده‌چگال، فنون‌ها ذراتی هستن که سبب رسانش گرمایی توی فلزات میشن. این شبه‌ذرات همون چیزایی هستن که ما بهشون میگیم ذره پدیداره یا emergent particle. انگار ذره‌ای در عمل نیست توی یه تکه فلز، اما ذره‌ای خلق شده جوری که مسئولیت رسانش گرمایی رو برعهده گرفته. برای همین، غیر از ذرات کوانتومی معروفی مثل پروتون، نوترون و الکترون یک سری ذره دیگه هم وجود دارده مثل فونون و گراوتیون که ذرات کوانتومی هستن. برای همین انتظار اینه که همه این ذرات آمارهای کوانتومی داشته باشن.

پس:

  • بسته به مقیاس مورد مطالعه‌مون به هر چیزی می‌تونیم بگیم ذره.
  • اگه ذره‌ای کوانتومی حساب بشه اون موقع اجتماعی از اون ذرات باید از آمار کوانتومی پیروی کنه.
  • آمار کوانتومی دو نوع داشت: آمار فرمی-دیراک و آمار بوز-آینشتین

راستش همه این حرفا برای ۳-بعد بود. توی ۱۰ – ۱۲ سال گذشته مردم به صورت نظری راجع به این حرف زدن که در ۲-بعد ذرات می‌تونن آمار خیلی غنی‌تری از خودشون نشون بدن! یعنی در ۲-بعد نمیشه همه رو به دو دسته فرمیون و بوزون دسته‌بندی کرد. در ۲ بعد خیلی خبرهای بیشتری داریم. از پیشگامان این عرصه نوبلیستی بود به اسم فرانک ویلچک. (با تاماش ویچک اشتباه گرفته نشه!)

اگه مردم بتونن نتایج آزمایش بالا رو بدون کم و کاست تکرار کنن، یک اتفاق بسیار مهم تو فیزیک به حساب میاد. به‌طور خلاصه، با این‌که ذرات در ۳-بعد یا آمار فرمیونی دارن یا بوزونی اما در ۲-بعد داستان خیلی پیچیده‌تره. اگر فازی که در اثر جابه‌جایی دو تا ذره به دست میاد رو به شکل $e^{i \theta}$ در نظر بگیریم برای بوزون‌ها θ صفره و برای فرمیون‌ها π. اما در ۲-بعد θ می‌تونه هر عددی باشه! حتی بالاتر از این میشه یه فضای برداری تعریف کرد و به جای یه فاز یه ماتریس یکانی اونجا گذاشت! (این اون چیزی‌است که محاسبات کوانتومی توپولوژیک قراره ازش استفاده کنه).

پیشنهاد می‌کنم این نوشته‌ رو بخونید و فرانک ویلچکو در توییتر دنبال کنید. ویلچک جزو فیزیکدونای بزرگیه که تلاش میکنه مردم عادی هم فیزیک رو بفهمن. مثلا در مورد شبه‌ذره‌ای مثل آنیون‌ هم مطالب و سخنرانی‌های جالبی داره:

جدید: این نوشته رو در مورد ویلچک بخونید: A Prodigy Who Cracked Open the Cosmos

پدیده‌های بحرانی ۱۵۰ سال پس از چارلز دلاتور

پیش‌تر نوشته‌ای تخصصی‌تر در مورد گذار فاز و پدیده‌های بحرانی نوشته بودم. این نوشته که ترجمه‌ای از یک مقاله است، بیشتر جنبه تاریخی دارد و برای مخاطب علاقه‌مند آشنا با پدیده‌های بحرانی می‌تواند جالب باشد!

پدیده‌های بحرانی ۱۵۰ سال قبل توسط چارلز کاگنیارد دلاتور در ۱۸۲۲ کشف شدند. به سبب این سالگرد، مفهوم و تاریخ اولیهٔ کشف او را بررسی کرده‌ایم و سپس با طرح مختصر تاریخ پدیده‌های بحرانی مسیر رشد و توسعه آن تا به امروز را دنبال می‌کنیم.


[arXiv:0905.1886 [physics.hist-ph

پدیده های بحرانی که امروزه یکی از مهمترین روش ها در بررسی گذار فازها در سیستم های پیچیده، فیزیک ذرات بنیادی و بسیاری دیگر از شاخه های علم فیزیک است به مجموعه‌ای از اتفاقات که در نقاط بحرانی رخ می‌دهند گفته می‌شود. پدیده های بحرانی اولین بار در بررسی گذار فازهای مواد دیده شدند. ساده ترین گذار فاز را می توان در تبخیر آب مایع و یا یخ زدن آب و گذار از فاز مایع به جامد و برعکس مشاهده کرد. در مورد آب گرمای ویژه و چگالی آب از متغیرهای قابل بررسی هستند که برای هر کدام می توان یک نمای بحرانی هم پیدا کرد و با استفاده از نظریه مقیاس و گروه های بازبهنجارش و یا نظریه ی میدان میانگین این نماهای بحرانی استخراج می‌شوند و برای هر پدیده یک کلاس جهان شمولی یافت می‌شود.

پدیده‌های بحرانی ۱۵۰ سال قبل توسط چارلز کاگنیارد دلاتور در ۱۸۲۲ کشف شدند. به سبب این سالگرد، در مقاله ی زیر به قلم برتراند برکه، مالته هنکل و رالف کنا، مفهوم و تاریخ اولیه‌ی کشف او را بررسی کرده‌ایم و سپس با طرح مختصر تاریخ پدیده‌های بحرانی مسیر رشد و توسعه آن تا به امروز را دنبال می‌کنیم.

paper-1

آگار، گذارفاز و بازگشت‌ناپذیری

در گذار فاز، سیستم ویژگی بازگشت‌پذیری ترمودینامیکی رو از دست میده و معمولا گسستگی در فضای ترمودینامیکی دیده میشه. یک لحظه مثال آب و یخ رو مرور کنیم: دمای انجماد آب (H2O مایع) و دمای ذوب برای یخ (H2O جامد) برابره. حدود صفر درجه آب یخ می‌زنه و یخ آب میشه!

اما مثلا برای «آگار» این‌جوری نیست! یعنی دمای ذوب آگار جامد و دمای انجماد آگار مایع یکی نیستند! آگار جامد در دمای ۸۵ درجه سانتی‌گراد ذوب میشه. اما وقتی آگار مایع داشته باشین و شروع به سرد کردنش کنید، در دمای ۴۰ درجه منجمد میشه (نه در ۸۵ درجه). یعنی چی؟!

وقتی آگار جامد رو در دمای ۸۵ درجه ذوب کنید، تا زمانی که به دمای ۴۰ درجه میرسه مایعه! یعنی اگه آگار ذوب شد و خواستین منجمدش کنید باید صبر کنید که به ۴۰ درجه برسه! برای همین اگه در بازه زمانی ۴۰ تا ۸۵ درجه آگار هم به صورت مایع می‌تونه وجود داشته باشه هم به صورت جامد! «بستگی داره که مسیر گرما دادن به سیستم چه جوری باشه» (ببینید که مسیر مهمه!)

این ایده وابستگی به مسیر رو توی فیزیک با واژه پسماند یا hysteresis در موردش حرف می‌زنند. مثال آشناترش وقتیه که میدان مغناطیسی روی یه تیکه آهن اعمال می‌کنیم و آهن خاصیت آهن‌ربایی (مغناطیسی) پیدا می‌کنه ولی وقتی میدان اعمال شده رو قطع می‌کنیم، برخلاف انتظارمون سیستم به حالت قبلی (عدم وجود خاصیت‌ آهن‌ربایی) بر نمی‌گرده

مدل تئوری مغناطش m، در برابر میدان مغناطیسی h. با شروع از مبدأ نمودار صعودی نشان‌دهنده منحنی مغناطش اولیه است. نمودار نزولی پس از اشباع، به همراه منحنی بازگشت پایین، حلقه اصلی را شکل می‌دهند.
نگاره از ویکی‌پدیا

این ایده اساسی شیوه کار کردن دیسک‌های مغناطسی (هارد کامپیوتر) هست.

این ویدیو هم ببینید:

«مقدمه‌ای بر بازبهنجارش» هفته دوم: زنجیره‌های مارکوف

دوره «مقدمه‌ای بر بازبهنجارش»

قصد من ارائه یک معرفی مدرن از بازبهنجارش از افق سیستم‌های پیچیده‌ است. با نظریه اطلاعات و پردازش تصویر آغاز می‌کنم و به سراغ مفاهیم بنیادی چون پدیدارگی، درشت-دانه‌بندی و نظریه مؤثر در نظریه پیچیدگی خواهم رفت. آنچه برای این مجموعه نیاز دارید شهامت آشنایی با ایده‌های جدید و البته کمی نظریه احتمال، حسابان و جبر خطی است. برای تمرین‌های پیشنهادی هم خوب است که کمی پایتون و متمتیکا بدانید.

با تشکر از Simon Dedeo، موسسه سانتافه و بهار بلوک آذری.

ایده بازبهنجارش در مورد مطالعه نظریه‌ها است هنگامی که از مقیاسی به مقیاس دیگر می‌روند.

هفته دوم: زنجیره‌های مارکوف

در این قست به سراغ زنجیره‌های مارکوف می‌روم و در مورد درشت‌دانه‌بندی کردن سری‌های زمانی صحبت خواهم کرد. به فضای مدل‌ها و تغییرات پارامترها پس از بازبهنجارش خواهم پرداخت و به نقاط ثابت، کاهش ابعاد فضا و تغییر کلاس‌ها اشاره خواهم کرد.


ویدیوها

۱) سری‌های زمانی و زنجیره‌های مارکوف

۲) ریاضیات زنجیره‌های مارکوف

۳) مدل بنیادی‌تر برای داده ریز-دانه‌بندی شده


برای مطالعه بیشتر


اسلایدها

2-MC

«مقدمه‌ای بر بازبهنجارش» هفته اول

دوره «مقدمه‌ای بر بازبهنجارش»

قصد من ارائه یک معرفی مدرن از بازبهنجارش از افق سیستم‌های پیچیده‌ است. با نظریه اطلاعات و پردازش تصویر آغاز می‌کنم و به سراغ مفاهیم بنیادی چون پدیدارگی، درشت-دانه‌بندی و نظریه مؤثر در نظریه پیچیدگی خواهم رفت. آنچه برای این مجموعه نیاز دارید شهامت آشنایی با ایده‌های جدید و البته کمی نظریه احتمال، حسابان و جبر خطی است. برای تمرین‌های پیشنهادی هم خوب است که کمی پایتون و متمتیکا بدانید.

با تشکر از Simon Dedeo، موسسه سانتافه و بهار بلوک آذری.

هفته اول: مقدمه

یک تصویر جِی‌پِگ (JPEG) چه ربطی به اقتصاد یا گرانش کوانتومی دارد؟ برای پاسخ به این پرسش باید به این نکته توجه کنیم که هر سه این‌ها در مورد این هستند که چه می‌شود وقتی توصیف‌هایمان از دنیا را ساده‌سازی کنیم!؟ JPEG با دور ریختن ساختار ریز، یک تصویر را به نحوی فشرده می‌کند که با یک نگاه گذرا جزئیات دور ریخته شده قابل شناسایی نباشد. اقتصاددانان هم با چشم‌پوشی از جزئیات روان‌شناسی هر فرد، در مورد رفتار انسان‌ها نظریه‌پردازی می‌کنند. در این میان، یادآوری کنیم که حتی سطح‌بالاترین آزمایش‌های ما در فیزیک نمی‌توانند به ما بنیادی‌ترین عناصر سازنده ماده را نشان دهند و نظریه‌هایمان برای تطابق با آزمایش‌ها ناگزیر به این هستند که برخی از جزئیات در مقیاس‌های بسیار ریز را محو کنند.

ایده بازبهنجارش در مورد همین چیزها است؛
مطالعه نظریه‌ها هنگامی که از مقیاسی به مقیاس دیگر می‌روند.


ویدیوها

هفته اول

۱) اقتصاد و نظریه موثر

۲) دانه‌-درشت‌بندی یک تصویر

۳) آنتروپی شانون


برای مطالعه بیشتر


اسلایدها

بازبهنجارش-مقدمه1

ویدیو ۲۵امین گردهمایی انجمن علمی ژرفا با موضوع سیستم‌های پیچیده

۲۵امین گردهمایی انجمن علمی ژرفا با موضوع سیستم‌های پیچیده با همکاری انجمن‌های علمی فیزیک، همبند، شناسا از دانشگاه صنعتی شریف و مرکز شبکه‌های پیچیده و علم دادهٔ اجتماعی دانشگاه شهید بهشتی در تاریخ ۲۴ام اردیبهشت ماه سال ۱۳۹۸ برگزار شد.

💰 اقتصاد و فیزیک سیستم‌های پیچیده – دکتر سامان مقیمی

🧠 مغز از پیچیده تا بغرنج – دکتر عبدالحسین عباسیان

🧬 پیچیدگی زیستی: در جستجوی تصویری واقع‌بینانه از ژنوتیپ و شایستگی – دکتر عطا کالیراد

میز گفت‌وگو درباره‌ی سیستم‌های پیچیده

حکایت «سیستم‌های پیچیده» چیست؟!

این نوشته رو به مناسبت بیست و پنجمین گردهمایی ژرفا با موضوع سیستم‌های پیچیده برای شماره ۸۱۸ روزنامه دانشگاه صنعتی شریف نوشتم.


برای دیدن نگاره با کیفیت بیشتر کلیک کنید. حق نشر متعلق به شماره ۸۱۸ روزنامه دانشگاه صنعتی شریف.

انسان به دنبال قدرت پیش‌بینی

از قرن ۱۷ میلادی ما انسان‌ها به امید پیدا کردن الگوهایی در طبیعت، با جدیت خاصی شروع به مطالعه دنیای اطرافمان به صورت کمی کردیم. رفته‌رفته عددها مهم‌تر شدند و همه هم‌ و غم‌مان تبدیل به این شد که بعد از به دست آوردن یک‌سری عدد، پیش‌بینی کنیم که عدد بعدی چیست! گاهی این پیش‌بینی در مورد مکان یک سیاره در آسمان بود بعد از چند ماه رصد یا دمای یک پیستون پر از گاز و مایع بعد از طی کردن یک فرایند ترمودینامیکی. گاهی هم آن عدد مطلوب، زاویه‌ی پرتاب یک توپ بود به لشکر دشمن! الگوهای حاکم بین اعداد همیشه موضوع هیجان‌انگیز و سودآوری برای مردم بود چرا که قدرت «پیش‌بینی» را در پی داشت.

قدرت پیش‌بینی، مزیت رقابتی علم بر فلسفه بود که از دل مدل‌سازی‌های عددمحور به دست می‌آمد. قرن ۱۹ و ۲۰ میلادی طی شد و نوبت به هزاره سوم رسید. انسان قرن ۲۱ام که به گمانش همه علوم را خوب می‌شناخت، با پرسش‌های جدیدی روبه‌رو شد. پرسش‌هایی که این بار مرز بین علوم را نشانه گرفته بودند. پرسش‌هایی از این جنس که حالا که فیزیک را به‌خوبی می‌شناسیم‌، آیا می‌توانیم یک ترکیب آلی را به خوبی توصیف کنیم یا مثلا شیوه تاشدگی یک پروتئین را با دقت خوبی پیش‌بینی کنیم؟! یا اگر متخصص زیست‌شناسی باشیم پیش‌بینی رفتار جامعه انسان‌ها در شرایط بحران اقتصادی برایمان ممکن است؟! در مورد رفتار بازار بورس چه؟ اکنون که سلول‌های عصبی را می‌شناسیم آیا کارکرد مغز را می‌توانیم توصیف کنیم؟ آیا می‌توانیم بگوییم که برای سلول‌های عصبی چه اتفاقی می‌افتد که فردی دچار بیماری‌هایی مانند صرع یا پارکینسون می‌شود؟ یا پرسش‌هایی از این قبیل که چرا هنوز مدیریت ترافیک و جلوگیری از مسدود شدن جاده‌ها برایمان دشوار است؛ مگر ما همان بشری نیستیم که به ماه سفر کرده‌ایم و با توسعه مکانیک کوانتومی بمب اتم ساخته‌ایم؟! چرا بعد از حل کردن این همه مسئله بغرنج، نمی‌توانیم زمان بحرانی برای همه‌گیری یک شایعه یا بیماری جدید در دنیا را محاسبه کنیم و برنامه دقیقی برای چگونگی واکسیناسیون مردم را تدوین کنیم؟ علی‌رغم این همه پیشرفت در علوم مختلف، چرا در حل این قبیل مسائل ناتوان مانده‌ایم؟!

چرا شناخت دنیای اتم‌ها برای شناخت دنیای شیمی کافی نیست؟! یا چرا «بیشتر، متفاوت است»؟

همه این‌ها پرسش‌هایی بود که به‌خاطر ظاهر ساده‌شان انسان قرن بیست‌ و یکمی نخست فکر می‌کرد که «علی‌الاصول» باید بشود جوابشان را دانست. بالاخره طی سه قرن گذشته، ریاضیات بسیار گسترش یافته بود و فیزیک – علم اتم‌ها و کهکشان‌ها – را به خوبی توسعه داده‌ بودیم. فیزیک هم که مادر شیمی است و شیمی مادر زیست‌شناسی و زیست‌شناسی توصیف‌کننده موجودات زنده و انسان‌ هم یک موجود زنده است. رفتار بازار بورس یا اقتصاد جهانی یا همه‌گیری یک بیماری هم بر اساس عملکرد همین موجودات زنده است. خب پس لابد با مقداری محاسبه می‌توان به این پرسش‌ها پاسخ داد. با این وجود، رفته رفته متوجه شدیم که فهم ما از سیستم‌هایی مانند مغز انسان یا اقتصاد جهانی دچار نواقص جدی است و پیش‌بینی و کنترل رفتار آن‌ها برای ما بسیار دشوار است. گویا این سیستم‌ها دارای پیچیدگی عجیبی هستند. به عبارتی، این سیستم‌ها، پیچیده هستند از آن‌جا که ما با آن‌که اجزایشان را می‌شناسیم و رفتار تک‌تک ‌آن‌ها را به خوبی می‌توانیم پیش‌بینی کنیم، ولی «رفتار جمعی» آن‌ها تحت یک ساختار جدید را نمی‌توانیم به خوبی توصیف کنیم! می‌دانیم که عملکرد سلول‌های عصبی سازنده مغز چگونه‌ است، اما عملکرد مغز را نمی‌توانیم توصیف کنیم. مثلا نمی‌دانیم تکلیف حافظه چیست! می‌دانیم که در سلول‌های عصبی حافظه وجود ندارد ولی با این حال، در مجموعه‌ای از همین سلول‌ها وجود دارد! همین مجموعه کارهای عجیب و غریب‌تری هم می‌کند. مثلا سلول‌های عصبی مغز به طور جمعی از خود، آگاهی نشان می‌دهند. در حالی که آگاهی در هیچ کجای سلول عصبی بیچاره وجود ندارد. تلاش برای حل این قبیل تناقض‌ها که در مقیاس ریز اگر همه چیز آشنا باشد، لزومی ندارد در مقیاس درشت‌تر رفتار سیستم را بتوانیم توصیف کنیم آغازگر انگاره‌ای جدید در علم بود؛ انگاره پیچیدگی.

پدیدارگی (Emergence) و لزوم تحول انگاره در علم

اگر به دنبال کتاب مناسبی برای یادگیری سیستم‌های پیچیده هستید، این کتاب پیشنهاد جدی ما است 🙂

بشر قرن ۲۱، به دنبال شناخت سیستم‌های پیچیده است. سیستم‌هایی که از تعداد زیادی اجزا تشکیل شده‌اند و نوعی نظم خودبه‌خودی بر آن‌ها حاکم است. در این سیستم‌ها در مقیاس ریز، اجزایشان برهم‌کنش‌های موضعی دارند ولی در مقیاس درشت، رفتارهای «پدیداره» از خود نشان می‌دهند که شبیه به رفتار اجزای آن در مقیاس ریز نیست. راستش، ما ناچار به درک سیستم‌های پیچیده هستیم. برای ما که همیشه مجذوب قدرت پیش‌بینی علم شده‌ایم مهم است که بدانیم اگر آنفولانزا در آفریقا شایع شد با چه احتمالی یک آلمانی در چه روزی بیمار می‌شود و با چه احتمالی یک ایرانی در چند روز بعد. برای ما مهم است، چرا که شبکه واگیری بیماری از لحاظ ریاضیاتی موجود ساده‌ای نیست و مطالعه یک فرایند دینامیکی روی چنین شبکه‌ای بدون کمک گرفتن از کامپیوترها غیرممکن است. برای ما حل هم‌زمان تعداد زیادی معادله دیفرانسیل غیرخطی که به‌ همدیگر وابسته هستند با قلم و کاغذ اصلا راحت نیست. حداقل تجربه سال اول و دوم زندگی دانشگاهیمان این را به ما گوش‌زد می‌کند!

سیستم‌های پیچیده مهم هستند، چرا که انگاره پیچیدگی عینک جدیدی برای مطالعه طبیعت به ما می‌دهد. انگاره پیچیدگی به ما می‌گوید مستقل از این‌که مسئله‌ای تا پیش از این در کدام حوزه‌ خاص از علم بررسی می‌شده، باید با نگاهی از پایین‌ به بالا به دنبال حل آن مسئله باشیم و همزمان از همه امکانات فنی و تحلیلیمان برای حل آن استفاده کنیم. برای مثال، مسئله مغز، یک مسئله در فیزیک یا شیمی یا زیست‌شناسی یا علوم کامپیوتر نیست. در مکتب/نگاه/انگاره پیچیدگی، مسئله مغز سوالی است که متخصصان حوزه‌های مختلف با ابزارهایی که دارند سعی می‌کنند در یک محیط مشارکتی راهی برای حل آن پیدا کنند.

انگاره پیچیدگی به ما می‌گوید با تبدیل کردن یک سیستم به اجزا سازنده آن و شناخت اجزا نمی‌توانیم به درک درستی از آن سیستم برسیم. مکتب پیچیدگی در برابر مکتب تقلیل‌گرایی (reductionism) قرار دارد.

(این نوشته از دکتر محمد خرمی در مورد تقلیل‌گرایی را بخوانید.)


نوشته‌های مرتبط