رفتن به نوشته‌ها

دسته: آموزشی

صورت‌بندی‌های مکانیک کلاسیک، قسمت یک

این میم بهونه خوبیه که در مورد روش‌های متفاوتی که میشه مکانیک کلاسیک رو ارائه کرد حرف زد. پس توی این نوشته، بدون پرداختن به مکانیک کوانتومی، سراغ فرمول بندی‌های مدرنی میریم که برای توصیف حرکت داریم.

صورت‌بندی نیوتون

نخستین فرمول بندی همان‌چیزی است که همه ما در مدرسه با آن آشنا شده‌ایم؛ صورت‌بندی نیوتون. نیوتون با ارائه سه قانون، چارچوبی کلی برای مطالعه حرکت معرفی کرد. با پذیرفتن این سه قانون، می‌شود حرکت ذرات غبار در هوا یا حرکت سیارات و کهکشان‌ها را با دقت خوبی توضیح داد و پیش بینی کرد. به طور خلاصه به کمک قوانین نیوتون می‌توانیم بگوییم زمین چگونه به دور خورشید می‌چرخد و اگر توپی را با فلان سرعت پرتاپ کنیم، کی به کجا می‌رسد.

قانون اول نیوتون در مورد ناظر است. این قانون می‌گوید برای داشتن درک درستی از حرکت اجسام، کسی که آن‌ها را مشاهده می‌کند هم مهم است. در واقع نیوتون قوانین حرکتش را برای ناظرهایی ارائه می‌دهد که در ابتدای امر تکلیف آن‌ها را مشخص کرده: ناظرهای لَخت. تعریف ساده ناظر لخت این گونه است: اگر جسمی را منزوی کنیم جوری که هیچ جسم دیگری روی آن اثری نگذارد، آن موقع، ناظر مورد نظر ما آنی است که ببیند جسم با سرعت ثابتی حرکت می‌کند. قاعدتا سرعت صفر‌(بی‌حرکتی) هم شامل این مورد می‌شود. بعد از مرور قانون دوم دوباره به این قانون فکر کنید. قانون اول از قانون دوم نتیجه نمی‌شود!

به دنبال قانون اول، قانون دوم نیوتون شیوه ترجمه اثرات خارجی وارد بر یک جسم به تغییرات سرعت آن را توضیح می‌دهد. بیان ریاضی این قانون معادله‌ی دیفرانسیل مرتبه دویی است که در یک طرف آن تغییرات تکانه جسم و طرف دیگر آن همه اطلاعات مربوط به اثرات خارجی را در قالب کمیت برداری به اسم نیرو قرار می‌دهد. دراینجا، تکانه جسم، حاصل‌ضرب کمیتی ذاتی به اسم جرم جسم در سرعت آن است. جرم جسم $m$ در این قانون، پارامتری است که آهنگ تغییرات سرعت جسم $\dot{\textbf{v}}$ به واسطه نیروهای وارد شده به آن یعنی $\textbf{F}$ را کنترل می‌کند.

$$\textbf{F} = m \frac{d^2\textbf{x}}{dt^2} = m\dot{\textbf{v}}$$

در فیزیک رسم است که مشتق زمانی یک کمیت را با گذاشتن یک نقطه‌ بالای آن نشان می‌دهیم. این‌که چرا قانون دوم توسط یک معادله دیفرانسیل مرتبه دو توصیف می‌شود، چیزی است که طبیعت انتخاب کرده. با این وجود این انتخاب برای ما تا حدودی خوشایند است. از لحاظ ریاضی تفسیر این معادله این است که اگر ما بدانیم بر جسمی چه نیروهایی وارد می‌شود و سرعت و مکان آن را در هر لحظه بدانیم، دیگر نیازی نیست اطلاعات بیشتری داشته باشیم تا حرکت آن جسم را توصیف کنیم. یعنی مکان و سرعت در یک لحظه تمام اطلاعات اولیه‌ای است که به آن‌ها نیاز داریم و بقیه اطلاعات دیگر را می‌توانیم حساب کنیم. زیباست. نه؟!

قانون سوم نیوتون را به شیوه‌های مختلفی می‌شود بیان کرد که حتما در مورد آن شنیده‌اید. آن‌چه که برایتان شاید جالب باشد این است که این قانون کامل نیست. منظور از کامل نبودن این است که در بعضی مسائل به تنهایی توصیف درستی ارائه نمی‌کند. چرا و چگونه‌اش بماند برای بعد. چیزی که الان مهم است این است که به واسطه قانون سوم نیوتون می‌شود روشی برای مقایسه و اندازه گیری جرم اجسام گوناگون پیدا کرد. پس به لطف این قانون، تکلیف جرم جسم مشخص می‌شود. حالا کافی است که نیروها را مشخص کنیم. آن‌موقع به واسطه قانون دوم می‌توانیم حرکت یک جسم را توصیف کنیم. مشکل این‌جاست که قوانین نیوتون به تنهایی این کار را برای ما انجام نمی‌دهند. یعنی در کنار این سه قانون، باید صورت‌بندی‌هایی برای نیروهای مختلف هم پیدا کنیم. خوش‌بختانه به نظر می‌رسد که تعداد نیروهای بنیادی از شمار انگشتان یک دست کمترند. در زندگی روزمره‌ ما، نظریه‌های گرانش و الکترومغناطیس تقریبا همه نیروهای وارد بر اجسام را توصیف می‌کنند. به طور خلاصه، هر بار که چیزی می‌افتد به خاطر گرانش است و هر چیز دیگر تقریبا منشا الکترومغناطیس دارد از جمله بالا بردن اجسام توسط بازوی ما یا آسانسور منزل!

حالا ما می‌توانیم طبیعت را توصیف کنیم. یا دست کم حرکت در طبیعت را تا وقتی که اثرات کوانتومی یا نسبیتی وارد نشده‌اند را با دقت خوبی توضیح دهیم.

اما این فقط یک روایت از طبیعت است. ما می‌توانیم این داستان را جور دیگری هم بیان کنیم. یعنی می‌شود حرکت اجسام را جور دیگری هم صورت‌بندی کرد بدون این‌که با صورت‌بندی نیوتون ناسازگار از آب درآیند. صورت‌بندی‌هایی که همین حرف‌ها را با ریاضیات متفاوتی بیان کنند و چه بسا قدرت عمل بیشتری به ما در محاسبات و تعمیم ایده‌ها — فرای مکانیک استاندارد — هم دهند.

آرامگاه نیوتون در کلیسای وست‌مینستر لندن

اصل کم‌ترین کنش و روش لاگرانژ و همیلتون

فرض کنید شما سامانه‌ای را در یک لحظه می‌بینید. سپس چشمانتان را برای مدت کوتاهی می‌بندید، دوباره باز می‌کنید و در لحظه‌ جدید سامانه را در موقعیت جدیدش مشاهده می‌کنید. برای مثال، توپی را تصور کنید که در لحظه اول در نقطه پنالتی و در لحظه بعدی در کنج دروازه جا گرفته. حالا تمام مسیرهایی که توپ ممکن است بین این دو لحظه طی کرده باشد را تصور کنید. مثلا یک مسیر این است که توپ مستقیم از نقطه پنالتی به کنج دروازه رفته باشد. یک مسیر ممکن دیگر این است که توپ روی منحنی هیجان‌انگیزتری حرکت کرده و به کنج دروازه نشسته. یک مسیر هم می‌تواند این باشد که توپ به هوا رفته، چرخیده و دست آخر برگشته و وارد دروازه شده. حالا فرض کنید، به هر کدام از این مسیرها کمیتی نسبت می‌دهیم به نام کُنِش و ما کنش همه مسیرها را در جدولی یادداشت می‌کنیم.

هیچ‌کس تا به حال ندیده که ضربه پنالتی به عقب برود و سپس به درواز برگردد. منطقی نیست. یا به عبارتی این مسیری نیست که طبیعت اجازه طی شدنش را بد‌هد وقتی شخصی به سمت دروازه ضربه می‌زند. پس قرارداد می‌کنیم که مسیری مجاز است که توسط طبیعت انتخاب شود و طبیعت مسیری را انتخاب می‌کند که کمترین (اکسترمم) کنش را داشته باشد. به این قاعده، اصل کمترین کنش یا اصل همیلتون می‌گویند. در عمل، همان‌طور که برای پیدا کردن نقاط اکسترمم توابع مشتق پذیر، به دنبال ریشه‌های مشتق آن تابع می‌گردیم، اینجا هم ایده‌هایی مشابه وجود دارد که نیاز نباشد همه مسیرها را امتحان کنیم. حالا فرض کنید که مسیری که کمترین کنش را دارد را پیدا کرده‌ایم. پس اگر اندکی آن‌را تغییر دهیم نباید کنش مسئله تغییر چشم‌گیری کند. درست همان‌طور که مثلا تابع $y = x^2$ در نقطه صفر که کمینه آن است تغییر چندانی نمی‌کند.

کنش $S$ را به صورت ریاضی می‌توانیم به صورت انتگرال زمانی تابع دیگری به نام $L$ بنویسم. چرا؟ چون این کَلک خوبی است که در ادامه از آن لذت‌ خواهیم برد! اسم انتگرال‌ده را هم به احترام آقای لاگرانژ و زحماتی که برای این صورت‌بندی پیش‌تر از خیلی‌ها انجام داده لاگرانژی می‌گذاریم. لاگرانژی تابعی از مکان، سرعت و احیانا زمان است. کلا بنا را هم بر این بگذارید که داریم بازی ریاضی می‌کنیم با این ایده که گویی لاگرانژی اطلاعات مربوط به ویژگی های ذاتی جسم و برهم‌کنش‌های آن با دیگر ذرات و موجودات دیگر را دارد و ما می‌خواهیم همه این اطلاعات بین دو زمان مشخص را به کنش نسبت دهیم. پس می‌نویسیم

$$S = \int^{t_2}_{t_1} L(q , \dot q, t) \, dt. $$

تا اینجا هیچ کار عجیبی نکرده‌ایم. فرض کرده‌ایم چیزی وجود دارد به اسم کنش که به صورت یک انتگرال تعریف می‌شود. همین‌طور از مختصات تعمیم یافته $q$ و $\dot q$ برای نشان دادن مکان و سرعت استفاده کرده‌ایم گویی می‌خواهیم از مختصه جدیدی به جای مثلا $x$ استفاده کنیم.

حالا می‌خواهیم ببینیم مسیر بهینه که اسمش را می‌گذاریم $q_{c(t)}$ چگونه به دست می‌آید. طبق چیزی که تعریف کرده‌ایم، مسیر بهینه باید کنش را کمینه (یا به عبارت فنی‌تر اکسترمم) کند. پس تحت تغییرات بینهایت کوچک مسیر، کنش متناظرش نباید تغییر خاصی کند. درست مانند وقتی که مشتق توابع پیوسته — که نشان‌دهنده تغییرات آن توابع هستند — در نقاط بیشینه یا کمینه‌شان صفر هستند. پس بیاید تغییرات کنش را حساب کنیم و برابر با صفر قرار دهیم

$$ \delta S = \int^{t_2}_{t_1} dt \left( \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot q} \delta \dot q \right) = 0. $$

با فرض این که ابتدا و انتهای مسیر را مشخص کرده‌ایم کافی است به کمک کَلَک انتگرال‌گیری جز به جز ادامه دهیم.

$$ \delta S = \int_{t_1}^{t_2} dt \left( \delta q_{(t)} \frac{\partial L}{\partial q} + \frac{d}{dt} \left( \delta q_{(t)} \frac{\partial L}{\partial \dot q} \right) – \frac{d}{dt} \left( \frac{\partial L}{\partial \dot q} \right) \delta q_{(t)} \right) $$

جمله میانی به راحتی از انتگرال خارج می‌شود. با کنار هم قرار دادن جمله اول و سوم خواهیم داشت

$$ \delta S = \int_{t_1}^{t_2} dt \, \delta q_{(t)} \left( \frac{\partial L}{\partial q} – \frac{d}{dt} \left( \frac{\partial L}{\partial \dot q} \right) \right) + \delta q_{(t)} \frac{\partial L}{\partial \dot q} \Big|_{t_1}^{t_2} $$

جمله ی آخر صفر است چون که ابتدا و انتهای مسیر را ثابت کرده‌ایم. البته می‌شد این انتخاب را انجام نداد و از جملات مرزی در مواردی استفاده کرد. اما برای این نوشته همین قدر جزئیات کافی است. از آن جا که $\delta q_{(t)}$ تغییراتی دلخواه است و برای مثال می‌تواند فقط در زمان دلخواه $t$ غیر صفر (تقریبا و با اغماض شبیه دلتای دیراک) باشد، انتگرالده‌مان باید در هر لحظه صفر باشد. پس کمینه کردن کنش، $\delta S =0$، نتیجه می‌دهد

$$ \frac{\partial L}{\partial q} = \frac{d}{dt} \left( \frac{\partial L}{\partial \dot q} \right) $$

این معادله همان چیزی است که بالای سر مرد عنکبوتی وسطی ابتدای این نوشته قرار دارد و در جامعه فیزیک مشهور است به معادله اویلر–لاگرانژ. این معادله معادلات حرکت را نتیجه می‌دهد. درست مانند قانون دوم نیوتون.

ولی لاگرانژی واقعا چیست؟ این سوال کمابیش در زبان نیوتونی مثل آن است که بپرسیم چه نیروهایی بر جسم وارد می‌شوند. برای پاسخ به این پرسش نیاز به شناخت سیستم و برهم‌کنش‌های آن داریم. مثلا برای ذره‌ای که در حال حرکت تحت یک پتانسیل است، لاگرانژی این سیستم برابر با با اختلاف انرژی جنبشی و پتانسیل آن ذره است. توجه کنید که لاگرانژی کمیتی نرده‌ای است،‌ برخلاف نیرو که کمیتی برداری است. از لحاظ ریاضی کار کردن با کمیت‌های نرده‌ای خیلی راحت‌تر است. این اولین حسن صورت‌بندی جدید است. همین طور توجه کنید که از لحاظ ابعادی، لاگرانژی بعد انرژی دارد. نکته دیگری که بد نیست بدانید این است که خیلی از اوقات لاگرانژی را بنا بر یک سری تقاضاهای فیزیکی مانند تقارن های حاکم بر سیستم حدس می‌زنیم. برای دیدن چند مثال در این مورد به این نوشته نگاه کنید: تقارن،قوانین پایستگی و اِمی نٌودِر.

این ویدیو سیر تاریخی این مسئله را به خوبی نشان می‌دهد:

منتظر ادامه این نوشته باشید.

اما اگر عجله دارید، این ویدیوها و این کتاب‌ را نگاه کنید:

در جستجوی فراخورشیدی‌ها

چگونه دانشمندان سیارات فراخورشیدی را کشف می‌کنند؟

حدود ۳۰ سال از تأیید کشف اولین سیاره فراخورشیدی (سیاره‌ای بیرون از منظومه شمسی) در سال ۱۹۹۲ میلادی می‌گذرد. به‌لطف رصدهای زمینی و مأموریت‌های فضایی انجام‌شده، تا‌به‌حال کشف بیش از پنج هزار سیاره فراخورشیدی به‌مرحله تأیید رسیده است. سیاراتی که چالشی بزرگ بر سر مدل‌های شکل‌گیری سیارات قرار داده‌اند. سیاراتی که طیف وسیع جرم و ویژگی‌های ساختارشان باعث شده‌ حتی تعریف دقیق یک سیاره، و مثلاً تفاوت آن با یک کوتوله قهوه‌ای، در هاله‌ای از ابهام فرو‌رود! اما منجمان چطور این سیارات را کشف کرده‌اند؟

در ویدیوی زیر که مربوط به جلسه کافه فیزیکِ انجمن فیزیک دانشگاه شهید بهشتی به‌مناسبت هفته جهانی امسال است، درمورد روش‌های متداول برای کشف سیارات فراخورشیدی و ایده اصلی این روش‌ها توضیح داده‌ام.

سورپرایزهای ریاضی در مکانیک کوانتومی: در ستایش دقت ریاضی

«دقت ریاضی بسیار زیاد در فیزیک استفاده چندانی ندارد. اما کسی نباید از ریاضی‌دان‌ها در این باره اشکالی بگیرد […] آن‌ها دارند کار خودشان را انجام می‌دهند.»

– ریچارد فاینمن، ۱۹۵۶

از دید بسیاری از فیزیکدان‌ها، دقت ریاضی (mathematical rigor) در اکثر اوقات برای جامعه فیزیک غیر‌ضروری بوده و حتی با کند کردن سرعت پیشرفت فیزیک می‌تواند برای آن مضر نیز باشد.

شاید بتوان دلیل فاینمن را برای بیان این نظر درک کرد؛ برای لحظه‌ای تصور کنید که فاینمن فرمالیسم انتگرال مسیر خود را به دلیل وجود نداشتن تعریف دقیق ریاضی از این انتگرال‌های واگرا (که تا به امروز نیز تعریف جامع و دقیقی از آن‌ها در دسترس نیست) معرفی نمی‌کرد و یا فیزیکدان‌ها به دلیل وجود نداشتن تعریف اصول موضوعه‌ای از نظریه میدان‌های کوانتومی، از آن استفاده نمی‌کردند! قطعا انتظار سطح یکسانی از دقت ریاضی در اثبات قضایای ریاضی و در نظریه‌های فیزیکی انتظاری بیش از حد سنگین و غیر عملی است اما، بر خلاف برداشت رایج در بین فیزیکدان‌ها، دقت ریاضی همیشه به معنی جایگزین کردن استدلال‌های بدیهی اما غیر دقیق با اثبات‌های خسته کننده نیست. در بیشتر اوقات دقت ریاضی به معنی مشخص کردن تعریف‌های دقیق و واضح برای اجزای یک نظریه است به طوری که استدلال‌های منطبق بر شهود با قطعیت درست هم باشند! شاید بتوان این مطلب را در نقل قول زیر خلاصه کرد:

«دقت ریاضی پنجره‌ای را غبارروبی می‌کند که نور شهود از طریق آن به داخل می‌تابد.»

اِلیس کوپر

در فرمول‌‌بندی نظریه‌های‌ فیزیکی، بی‌توجهی به پیش‌فرض‌ها و ظرافت‌های ریاضی می‌تواند به سادگی به نتایجی در ظاهر متناقض بی‌انجامد که در بسیاری از موارد عجیب و حیرت‌انگیز به نظر می‌رسند. این مثال ساده از مکانیک کوانتومی را در نظر بگیرید: برای ذره‌ای کوانتومی در یک بعد، عملگر‌های تکانه خطی P و مکان Q از رابطه جا‌به‌جایی هایزنبرگ پیروی می‌کنند

حال با گرفتن رد (trace) از دو طرف این رابطه مشاهده می‌کنیم که رد طرف چپ این معادله با استفاده از خاصیت جا‌به‌جایی عمل ردگیری صفر می‌شود در حالی که رد سمت راست این معادله غیر صفر است! از آنجا که این رابطه یکی از بنیادین‌ترین روابط مکانیک کوانتومی است و بسیاری از مفاهیم عمیق فیزیکی مکانیک کوانتوم نظیر اصل عدم قطعیت از آن نتیجه می‌شود، این نتیجه (به ظاهر) متناقض حیرت انگیز به نظر می‌رسد! برای پیدا کردن مشکل بیاید نگاه دقیق‌تری به رابطه جا‌به‌جایی هایزنبرگ و دامنه اعتبار تعریف عمل ردگیری بی‌اندازیم: فرض کنید رابطه جا‌به‌جایی بالا برای دو عملگر P و Q، که روی فضای هیلبرت H با بعد متناهی n تعریف می‌شوند، برقرار باشد. در این صورت، عملگرهای P و Q با ماتریس‌های n*n مختلط داده خواهند شد و عمل ردگیری از آن‌ها خوش‌تعریف است. بنابرین، نتیجه متناقض

نشان می‌دهد که رابطه جا‌به‌جایی هایزنبرگ نمی‌تواند روی فضاهای هیلبرت با بعد متناهی برقرار باشد. در نتیجه مکانیک کوانتومی باید روی‌ فضای هیلبرت با بعد نامتناهی (اما شمارا) تعریف شود: روی چنین فضاهایی عمل ردگیری برای تمام عملگرها خوش‌تعریف نبوده (به طور مشخص رد عملگر واحد روی این فضاها تعریف نشده است) و نمی‌توان تناقض بالا را روی این دسته از فضاها نتیجه‌گیری کرد! با تعمیم تناقض بالا به فضاهای هیلبرت بی‌نهایت بعدی حتی می‌توان نتیجه قوی‌تری نیز درباره عملگرهای تکانه و مکان گرفت ــ حداقل یکی از این عملگرها باید بی‌کران (unbounded) باشد؛ این بدان معنی است که مقادیر ویژه کران‌دار نبوده و این عملگر روی تمام فضای هیلبرت خوش‌تعریف نخواهد بود! این نتیجه خود به آن معنی است که نه عملگرهای خلق و فنا و نه عملگر هامیلتونی (انرژی) روی تمام حالات فضای هیلبرت نوسانگر هماهنگ خوش‌تعریف نیستند (هر چند می‌توان بستار این عملگرها را روی کل فضای هیلبرت تعریف نمود). هر کدام از این نتایج خود منجر به نتیجه‌گیری‌های شگفت‌انگیز دیگری می‌شوند که ما را مجبور می‌سازند در تعریف بسیاری از مفاهیم به نظر بدیهی تجدید نظر کنیم: برای مثال، در فضاهای هیلبرت بی‌نهایت بعدی و در حالتی که تمام عملگر‌های فیزیکی کران‌دار باشند، می‌توان حالتی را متصور شد که فضا هیلبرت شامل هیچ حالت غیر درهمتنیده‌ای بین دو ‍‍‍‍«زیر سیستم» نباشد و در نتیجه نتوان آن را به صورت ضرب تانسوری دو فضای هیلبرت متعلق به هر زیر سیستم نوشت! این مسئله نیاز به تعریف دقیق‌تری از مفهوم «زیر سیستم» در نظریه میدان‌های کوانتومی و تعمیم‌های آن (مانند نظریه گرانش کوانتومی) را نشان می‌دهد که خود می‌تواند به حل شدن بخشی از تناقض‌های عمیق‌تر مانند مسئله اطلاعات سیاه‌چاله‌ها منجر شود! توجه کنید که دقت به دامنه اعتبار رابطه جا‌به‌جایی هایزنبرگ به نوبه خود چگونه می‌تواند ما را در درک بهتر درهمتنیدگی در نظریه میدان‌های کوانتومی و سوالاتی عمیق‌تر از جمله ساختار علی فضا و زمان و یا مسئله اطلاعات سیاه‌چاله‌ها یاری کند! مثال‌هایی از این دست در مکانیک کوانتومی و نظریه میدان‌های کوانتومی به فراوانی یافت می‌شوند که چند مثال دیگر و توضیح مفصل در مورد چگونگی حل آن‌ها را می‌توانید در مقاله آموزشی (و بسیار هیجان‌انگیز) زیر پیدا کنید:

Mathematical surprises and Dirac’s formalism in quantum mechanics

François Gieres 2000 Rep. Prog. Phys. 63 1893

By a series of simple examples, we illustrate how the lack of mathematical concern can readily lead to surprising mathematical contradictions in wave mechanics. The basic mathematical notions allowing for a precise formulation of the theory are then summarized and it is shown how they lead to an elucidation and deeper understanding of the aforementioned problems. After stressing the equivalence between wave mechanics and the other formulations of quantum mechanics, i.e. matrix mechanics and Dirac’s abstract Hilbert space formulation, we devote the second part of our paper to the latter approach: we discuss the problems and shortcomings of this formalism as well as those of the bra and ket notation introduced by Dirac in this context. In conclusion, we indicate how all of these problems can be solved or at least avoided.

در اهمیت مسئله حل کردن!

  • چرا اصلی‌ترین راه یادگیری دست‌ورزی با اون موضوعه؟!
  • چرا مهم‌ترین چیز برای یک دانشجوی علوم پایه مسئله حل کردنه؟!
  • چرا بهترین کتاب، اونیه که مسئله‌های بهتری و مسیر بهتری برای فکر کردن پیشنهاد می‌کنه؟
  • چرا خوندن چندین کتاب پیشنهاد نمیشه، اما خوندن یه کتاب یا رفتن سر یه کلاس کافیه و مهم اینه که تعداد مناسبی مسئله حل کنیم؟

همه این سوال‌ها به این برمی‌گرده که یادگرفتن یک مسیر کشف و شهود شخصیه! هر آدمی باید خودش بکوشه تا درک درستی رو «از آن» خودش کنه و این فقط با تمرین حل کردن ممکنه. گاهی ما فکر می‌کنیم که با خوندن کتاب‌های مختلف یا دیدن کورس‌های دانشگاه‌های معروف دیگه بعضی مطالب رو به درستی فهمیدیم. در حالی که معمولا این حس خوشایند فهمیدن نوعی توهمه! در واقع احساس موقتی در ما شکل می‌گیره که به خاطر بیشتر شدن درکمون نسبت به ناآگاهی کامله. برای همین این دلیل نمیشه که به میزان کافی یادگیری حاصل شده باشه. به‌خاطر همین، مسئله حل کردن به ما کمک می‌کنه که دونه دونه چک کنیم چه چیز‌هایی رو خوب متوجه شدیم و چه چیزهایی رو نیاز به بازآموزی داریم. همیشه یادگیری و درکمون از مطلبی رو با حل مسئله پیرامون اون موضوع باید بسنجیم.

این عکس نشون میده که خوندن کتاب‌های درسی یا سر کلاس رفتن فقط نقاطی رو در ذهن ما روشن می‌کنه در صورتی که این خود ما هستیم که باید اون نقاط رو به هم وصل کنیم تا الگوی درستی رو به خاطر بسپاریم.

علت این که خیلی وقتا دانشجوها مطالب سال‌های قبل رو یادشون می‌ره به این برمی‌گرده که تعداد کمی مسئله حل کردن. معمولا آدمایی که زیاد تمرین حل می‌کنن با یک مرور کوتاه خیلی سریع می‌تونن چیزهایی که توی ذهنشون در حال حاضر نیست رو به خاطر بیارن و ازشون استفاده کنند.

با کتاب خوندن و کورس دیدن میشه نمره خوبی گرفت، حتی شب یک امتحان. کافیه شما به میزان کافی باهوش باشین و مطالعه خوبی قبل از امتحان بکنید. اما این یادگیری نیست! در حقیقت شما برای مقطع کوتاهی از زمان یک سری اطلاعات رو به حافظه کوتاه مدت سپردین! اطلاعاتی که شامل یک‌سری رویه و دانستنی مربوط به موضوع علمیه. اما با مسئله حل کردن شما دانش بیرونی رو تبدیل به دانش شخصی می‌کنید. برای همینه که خیلی‌ها نمره‌های خوبی می‌گیرن و کنکور هم رتبه‌های خوبی می‌گیرن از کارشناسی تا دکتری اما هیچ موقع پژوهشگر‌های خوبی نمیشن! ذهن نیاز داره به تمرین همیشگی، پس تا جایی که می‌تونید تمرین حل کنید و خودتون رو با چالش‌های فکری بیشتری درگیر کنید.

طراحی مدادی دون کیشوت

«تدریس به صورت دنباله‌ای از اعمال و تعاملات و دنباله‌ای از تصمیمات گرفته شده توسط معلم، در زمان اتفاق می‌افتاد. در عوض، یادگیری، به عنوان فرایند بلوغ، حتی در زمان خواب، طی زمان اتفاق می‌افتد. لیکن تنها زمانی یادگیری رخ می‌دهد که یادگیرندگان را به جای این که همیشه تسلیم و موافق باشند به ادعا کردن، حدسیه‌سازی  دفاع از حدسیه‌ها و استفاده از توانایی‌های دیگرشان دعوت کنیم.»

جان میسون

انتگرال لبگ

در شاخه‌ی آنالیز حقیقی، انتگرال ریمانی مفهومی است که در آن به شکلی ارتباط بین یک تابع و مساحت زیر آن را در یک بازه مشخص می‌کند. انتگرال ریمانی کاربردهای فراوانی در علم دارد و البته دچار کاستی‌هایی نیز هست. به منظور رفع کاستی‌های انتگرال ریمانی، ریاضی‌دانان در پی ابداع کردن نظریات انتگرال دیگری برآمدند. یکی از این‌ نظریات، نظریه اندازه‌ و انتگرال لبگ است.

انتگرال ریمانی:

در فضای اعداد حقیقی بازه‌ای چون (a,b) را درنظر بگیرید. انتگرال ریمانی تابع f(x) برروی این بازه، معادل مساحت زیر نمودار تابع است.

مقدار این انتگرال برابر است با:

$ S= \int_{a}^{b}f(x) dx $

ریمان برای محاسبه‌ی مساحت زیر نمودار و معرفی انتگرال ریمانی، از ایده‌ی قسمت‌بندی کردن بازه‌ای که انتگرال بر روی آن محاسبه می‌شود، استفاده کرد.به بیان ریمان اگر بازه‌ها را به قسمت‌های مساوی تقسیم کنیم به‌گونه‌ای که :$ a=x_{0} <x_{1} <… < x_{n} = b $ باشد و $ \Delta x_{i} = x_{i} – x_{i-1}$ . سپس با استفاده از دو مفهوم سوپریمم و اینفیمم (کوچکترین کران بالا و بزرگترین کران پایین) مجموع‌های زیر را تعریف کرد.

$\sum_{i=1}^{n}M_{i} \Delta x_{i} = \sum_{i=1}^{n} \sup f(x) \Delta x_{i} $

$$ \sum_{i=1}^{n}m_{i} \Delta x_{i} = \sum_{i=1}^{n} \inf f(x) \Delta x_{i} $$

یک تابع انتگرال‌پذیر ریمانی است، هرگاه:

$$ \lim_{n\to\infty}\sum_{i=1}^{n} M_{i} \Delta x_{i} = \lim_{n\to\infty}\sum_{i=1}^{n} m_{i} \Delta x_{i} $$

هرگاه دو حد بالا موجود و برابر باشند، تابع انتگرال‌پذیر ریمانی است. انتگرال ریمان در شاخه‌های علم محاسبات را تسهیل کرده است، اما با نارسایی‌هایی مواجه است که در ادامه به آن می‌پردازیم.

۱. انتگرال ریمان، یک انتگرال وابسته به وجود حد است.

به این معنی که برای وجود پاسخ انتگرال ریمانی باید دو حد $$ \lim_{n\to\infty}\sum_{i=1}^{n} \sup f(x) \Delta x_{i} $$ و $$ \lim_{n\to\infty}\sum_{i=1}^{n} \inf f(x) \Delta x_{i} $$ موجود باشد. در غیر این صورت، تابع انتگرال‌پذیر نیست.

۲. انتگرال ریمانی به پیوستگی تابع وابسته است.

توابعی که دچار ناپیوستگی‌های اساسی باشند، انتگرال‌پذیر نیستند. (توابع تکه‌ای پیوسته انتگرال‌پذیرند.)

۳.انتگرال ریمانی از R به R تعریف شده است.

یعنی اگر دامنه انتگرال به جای R ، $R^{2}$ باشد انتگرال ریمانی تعریف نشده است.

انتگرال لبگ و نظریه‌ی اندازه‌ها، کاستی‌های انتگرال لبگ را رفع کرده است و کلاس خاصی از فضای هیلبرت را نیز ساخته است.

اندازه چیست؟

نظریه انتگرال لبگ نیازمند روشی ساختاریافته است که در آن بتواند مفهوم اندازه را معرفی کند. به بیان ساده اندازه تعمیمی از طول، مساحت، و حجم است. بازه‌ی [a,b] را درنظر بگیرید. طول این باز معادل b-a است. حالا دو بازه‌ی کاملا مستقل [a,b] و [c,d] را درنظر بگیرید. به نظر می‌رسد که طول مجموع این دو بازه (b-a)+(d-c) است. اگر بازه‌ها زیرمجموعه‌ی اعداد گنگ باشد چه می‌شود؟ آیا می‌توان به سادگی مفهوم طول را معرفی کرد؟ به نظر می‌رسد این‌جا نیازمند تعاریف دقیق‌تر ریاضی هستیم.

سیگما -جبر

مجموعه‌ای به نام X را درنظر بگیرید. $ \Sigma $ یک مجموعه از زیرمجموعه‌های X است. آن را سیگما-جبر می‌گوییم، هرگاه ویژگی‌های زیر را داشته باشد.

  • X و تهی عضو سیگما باشند.
  • اگر E عضو سیگما بود، متمم آن نیز عضو سیگما باشد.
  • اجتماع تعداد شمارایی از اعضای سیگما، مجددا عضو سیگما باشند.

حال با دانستن تعریف سیگما- جبر به سراغ مفهوم اندازه می‌رویم؛

تابع اندازه ، $\mu (X)$،برروی مجموعه‌ی X تعریف می‌شوند که X سیگما-جبر است. این تابع دارای خواص زیر است.

۱. اگر X مجموعه تهی یا تک‌عضوی باشد، اندازه آن صفر است. در غیر این صورت، اندازه آن همواره مثبت است.

۲.اندازه‌ی مجموع دو مجموعه‌ی بدون اشتراک برابر با مجموع اندازه‌های هرکدام از مجموعه‌هاست. یعنی:

$$ \mu(X_{1} + X_{2})= \mu (X_{1}) + \mu(X_{2})$$

هرگاه

$$ X_{1} \cap X_{2} = \phi$$

اندازه لبگ

مهم‌ترین قسمت انتگرال‌گیری لبگ، یافتن اندازه برروی مجموعه‌ای است که روی آن انتگرال اعمال می‌شود. اگر یک مجموعه شامل ناپیوستگی‌های بسیار باشد، باید راهی پیدا کنیم تا بتوانیم اندازه را بر روی این مجموعه‌ تعریف کنیم. حاصل کار اندازه‌ی لبگ است. با یک مثال ساده، انتگرال لبگ را تعریف می‌کنیم. بازه‌ی بسته‌ [a,b] به طول L را در نظر بگیرید. این بازه را می‌توانیم به دو بازه با اشتراک صفر تقسیم کنیم. مجموعه X شامل نقاطی که عضو [a,b] هستند و ‘X (متمم مجموعهX) شامل نقاطی از [a,b] است که در X وجود ندارد. تصویر زیر را نگاه کنید.

مجموعه X و متمم آن

می‌خواهیم اندازه لبگ را بر روی این دو مجموعه تعریف کنیم. بدین منظور، X را با بازه‌های بدون اشتراک$\Lambda_{i}$نشان می‌دهیم. در بیان نظریه مجموعه‌ها، داریم:

$$ \Lambda_{i} \subset [a,b]$$

$$\Lambda_{i} \cap \Lambda_{j} = \phi$$

$$X \subset (\Lambda_{1} + \Lambda_{2} +…)$$

اگر طول بازه $\Lambda_{k}$ را معادل $l_{k}$ بدانیم، از آنجا که طول بازه [a,b] برابر L است، نامساوی زیر صادق است.

$$ 0 \leqslant \Sigma_{k}l_{k} \leqslant L$$

کمترین مقدار $\Sigma_{k}l_{k}$ را اندازه بیرون می‌نامیم. به بیان دیگر :

$$ \mu_{out}(X) = inf (\Sigma_{k} l_{k} )$$

به همین ترتیب، مجموعه‌های $ \Lambda_{k}^{\prime} \subset [a,b]$ را معرفی می‌کنیم.

$$ X^{\prime} \subset (\Lambda_{1}^{\prime} +\Lambda_{2}^{\prime} +…) $$

$$ 0\leqslant \Sigma_{k} l_{k}^{\prime} \leqslant L$$

و اندازه داخل را به فرم $\mu_{in}(X)= L- \mu_{out}(X^{\prime}) = L- inf(\Sigma_{k} l{k}^{\prime})$ معرفی می‌کنیم. ضمنا

$$ 0 \leqslant \mu_{in}(X) \leqslant \mu_{out} (X) $$

زمانی $\mu_{in}(X) =\mu_{out}(X)$ شود، آنگاه $\mu_{in}(X)=\mu_{out}(X)=\mu(X)$ و $\mu(X)$ اندازه لبگ است.

انتگرال لبگ چیست؟

تابع f(x) را به‌گونه‌ای در نظر بگیرید که از بالا و پایین توسط بیشینه و کمینه خود محدود شده است.

$$ 0 \leqslant f_{min} \leqslant f(x) \leqslant f_{max}$$

تابع f(x) را به دنباله‌ی $ {f_{k}} $ تقسیم می‌کنیم به طوری که، $ f_{1}= f_{min}$ و $f_{n}=f_{max}$ باشد. با توجه به تناظر یک به یک بین x و f(x) مجموعه‌های $ X_{i}$ وجود دارند به گونه‌ای که:

$$ f_{k} \leqslant f(x) \leqslant f_{k+1} , x \in X_{k} , 1 \leqslant k \leqslant n-1 $$

برای هر مجموعه $ X_{k} $، اندازه‌ای درنظر می‌گیریم و اکنون می‌توانیم مجموع لبگ را تعریف کنیم.

$$ \Sigma_{k=1}^{n} f_{k} \mu(X_{k}) $$

اگر در $ n\to \infty$ این مجموع همگرا شود، آنگاه می‌توان انتگرال لبگ را تعریف کرد.

$$\int_{X} f d\mu \equiv lim_{max|f_{k}-f_{k-1}| \to 0} [\Sigma_{k=1}^{n} f_{k} \mu(X_{k})]$$

انتگرال لبگ

انتگرال ریمان و انتگرال لبگ

اکنون قصد دارم انتگرال ریمان را به روش انتگرال لبگ تعریف کنم تا بهتر متوجه شباهت‌ها و تفاوت‌های آنها شویم.

تابع f(x) که در بازه‌ی [a,b] تعریف شده را در نظر بگیرید. اگر $X=[a,b]$ را به بازه‌های بدون اشتراک $X_{i}$ تقسیم کنیم، مجموع ریمان به فرم زیر تعریف می‌شود.

$$ \Sigma_{k=1}^{n} f(\xi_{k})\mu(X_{k}) , \xi_{k} \in X_{k}$$

این مجموع به‌گونه‌ای تعریف شده است که هر گاه $ n\to\infty$ برای هر $X_{k}$ ، $\mu(X_{k}) . . . \to 0$ در صورت وجود حد $\lim_{n \to \infty} \Sigma_{k=1}^{n} f(\xi_{k}) \mu(X_{k})$ این مجموع، انتگرال ریمان تابع f(x) بر X است.

اگرچه تعریف مجموع لبگ با مجموع ریمان که در بالا تعریف کردیم، شباهت‌هایی دارد،اما تفاوت‌های اساسی در این دو مجموع مشهود است. در مجموع ریمان، f(x) را در هر نقطه‌ی دلخواه $\xi_{i} \in X_{i}$ درنظر می‌گیریم. اما در مجموع لبگ مقدار f(x) را در هر زیرمجموعه $X_{k}$ درنظر می‌گیریم. به این‌ترتیب برای وجود انتگرال لبگ نیازی به شرط هموار بودن موضعی تابع نداریم. به دو شکل زیر نگاه کنید تا آنچه که اینجا بیان شده است، بهتر مشخص شود.

مجموع ریمان در هر نقطه از تابع تعریف می‌شود.
مجموع لبگ در هر بازه تعریف می‌شود.

ویژگی‌های انتگرال لبگ

۱. انتگرال لبگ یک تابع صفر است، هرگاه اندازه‌ی مجموعه‌ی آن صفر باشد.

۲. انتگرال لبگ یک تابع متناهی است، لذا زیرمجموعه‌ی $X^{\prime}=\{x| f(x)= \pm\infty\}$ وجود دارد به‌طوری که$\mu(X^{\prime})=0$ به بیان دیگر، زمانی که f(x) همگراست، الزاما اندازه مجموعه‌هایی که در آن f(x) واگراست، صفر است.

۳.$\int_{X} f(x) d\mu$ متناهی است و $X^{\prime} \subset X$. اگر $ \mu(X^{\prime}) \to 0$، آنگاه $ \int_{X^{\prime}} f d\mu \to \infty $.

۴. زمانی که f(x) برروی X مقادیر مثبت و منفی را اختیار کند، انتگرال لبگ به صورت زیر تعریف می‌شود.

$$ \int_{X} f d\mu = \int_{X} f^{+} d\mu + \int_{X} f^{-} d\mu$$

$$\int_{X} |f| d\mu = \int_{X} f^{+} d\mu – \int_{X} f^{-} d\mu$$

برابری تقریبا همه‌جا

در قسمت‌های قبل مشاهده کردیم زمانی که اندازه‌ی مجموعه‌ای صفر باشد، آنگاه آن مجموعه دخالتی در انتگرال لبگ ندارد. همین ویژگی منجر به مفهوم «برابری تقریبا همه‌جا» برای توابع اندازه‌پذیر شد. این ویژگی نقش بسیار مهمی در توسعه آنالیز تابعی دارد.

می‌گوییم دو تابع f(x) و g(x) که برروی مجموعه X تعریف شده‌اند، تقریبا همه‌جا با هم برابرند، هرگاه:

$$\mu \{x \in X : f(x) \neq g(x)\}=0$$

فضای $L^{p}$

فضای $L^{p}$، فضایی است که توسط توابع مختلط f(x) ساخته می‌شود. در این فضا $|f|^{p}$ انتگرال‌پذیرلبگ است. اگر p=2 باشد، $L^{2}$ عضوی از فضاهای هیلبرت است. زمانی که $p \neq 2 $ باشد، فضای $L^{p}$ خاصیت ضرب داخلی خود را از دست می‌دهد، اما $L^{p}$ همچنان فضای کامل است.

منابعی برای یادگیری نظریه اندازه و انتگرال لبگ:

در دانشکده‌های علوم ریاضی برای یادگیری این مباحث، عمدتا کتاب‌های قدیمی و معروف آنالیز حقیقی معرفی می‌شوند. از آنجا که من فکر می‌کنم با تغییر نسل‌ها، منابع آموزشی نیز باید تغییر کنند کتاب‌هایی را معرفی می‌کنم که اولا در دهه‌ی اخیر تالیف شده‌اند. ثانیا، ادبیات و نحوه‌ی روایت آن با ذهن کسانی که کمتر با ریاضیات مجرد آشنایی دارند، قرابت بیشتری دارد.

Functional anlysis for physics and engineering, Shima Hiroyuki 2016

A short course on the Lebesgue integral and measure theory, Steve Cheng

Elementary introduction to the lebesgue integral. Steve G.Krantz 2018

#شرح_پیچیدگی

در توییتر متخصصان حوزه پیچیدگی با هشتگ #ComplexityExplained در مورد مفهوم پیچیدگی توییت کردند و ماحصل توییت‌ها تبدیل به دفترچه‌ای شد در #شرح_پیچیدگی. دفترچه‌ای برای توضیح مفهوم پیچیدگی بر اساس آرا صاحب‌نظران این حوزه!

شما می‌توانید سایت اصلی این پروژه را با رفتن به این نشانی ببینید:
complexityexplained.github.io

این اثر با مجوز زیر منتشر شده است:
CC BY-NC-ND 4.0

این شما و این نسخه فارسی این دفترچه :

ComplexityExplainedFarsi

«مقدمه‌ای بر بازبهنجارش» هفته پنجم: بازبهنجارش در فیزیک انرژی‌های بالا، نظریه گروه‌ها و نظریه نرخ-اعوجاج

دوره «مقدمه‌ای بر بازبهنجارش»

قصد من ارائه یک معرفی مدرن از بازبهنجارش از افق سیستم‌های پیچیده‌ است. با نظریه اطلاعات و پردازش تصویر آغاز می‌کنم و به سراغ مفاهیم بنیادی چون پدیدارگی، درشت-دانه‌بندی و نظریه مؤثر در نظریه پیچیدگی خواهم رفت. آنچه برای این مجموعه نیاز دارید شهامت آشنایی با ایده‌های جدید و البته کمی نظریه احتمال، حسابان و جبر خطی است. برای تمرین‌های پیشنهادی هم خوب است که کمی پایتون و متمتیکا بدانید.

با تشکر از Simon Dedeo، موسسه سانتافه و بهار بلوک آذری.

ایده بازبهنجارش در مورد مطالعه نظریه‌ها است هنگامی که از مقیاسی به مقیاس دیگر می‌روند.

هفته پنجم: بازبهنجارش در فیزیک انرژی‌های بالا، نظریه گروه‌ها و نظریه نرخ-اعوجاج

در ابتدای این جلسه کمی در مورد بازبهنجارش در فیزیک انرژی‌های بالا صحبت خواهم کرد و سپس با معرفی کوتاهی از نظریه‌ گروه‌ها، سراغ قضیه Krohn–Rhodes می‌روم. در انتها به این پرسش می‌پردازم که آیا برتری بین روش‌های درشت-دانه‌بندی وجود دارد یا خیر. در قسمت انتهایی نظریه نرخ-اعوجاج (Rate–distortion theory) را مطرح می‌کنم.


ویدیوها

۱) بازبهنجارش در فیزیک انرژی‌های بالا

۲) نظریه گروه‌ها

۳) نظریه نرخ-اعوجاج


برای مطالعه بیشتر


اسلایدها

بازبهنجارش-قسمت-آخر