برای بچههای دبیرستان (راهنمایی قدیم!) در مورد نظریه پیچیدگی صحبت کردم:
۱) اسلایدها:
سیستمهای-پیچیده1۲) فایل صوتی:
۳) ویدیو:
برای بچههای دبیرستان (راهنمایی قدیم!) در مورد نظریه پیچیدگی صحبت کردم:
۱) اسلایدها:
سیستمهای-پیچیده1۲) فایل صوتی:
۳) ویدیو:
شب یلدا رو همه به عنوان طولانیتر شب سال میشناسیم. اما در مورد طولانیترین شب سال چیزی میدونیم؟ توی این پست شب یلدا (انقلاب زمستانی) و اول تیر (انقلاب تابستانی) رو از نظر نجومی بررسی میکنیم و درمورد علت بهوجود اومدن فصلها و تغییر طول روز و شب بحث میکنیم. امیدوارم شب یلدا بهتون خوش بگذره و آغاز زمستونی پر برکت برای همه باشه :))
مدار زمین به شکل بیضی هست و خورشید توی یکی از کانونهای این بیضی قرار داره. درنتیجه زمین طی حرکت سالیانهٔ خودش، فاصلهاش نسبت به خورشید تغییر میکنه، اما مقدار این تغییر در مقابل فاصلهٔ متوسط زمین تا خورشید خیلی ناچیزه. میدونیم که زمین توی نزدیکترین وضعیت از خورشید حدود ١۴٧میلیون کیلومتر، و در دورترین حالت، حدود ١۵٢میلیون کیلومتر از خورشید فاصله داره؛ یه حساب سرنگشتی میگه که فاصلهٔ زمین تا خورشید حدوداً ٢ درصد از فاصلهٔ میانگین اختلاف پیدا میکنه که خیل کمه. به بیان فنیتر، خروج از مرکز مدار بیضوی زمین ٠.٠١٧ هست که یعنی مدار زمین خیلی شبیه به یک دایره هست تا بیضی. بنابراین عملاً ما زیاد فاصلهمون از خورشید تغییری نمیکنه.
پس این تصور رایج که فصلها به دلیل دور و نزدیک شدن زمین به خورشید اتفاق میافتن، اشتباهه. جالبه بدونید که اتفاقاً زمین توی ١٣ تیرماه به بیشترین فاصله، و توی ١۴ دی به کمترین فاصلهاش از خورشید میرسه.پس دلیل به وجود اومدن فصلها چیز دیگهای باید باشه.
در واقع دلیل اصلی اینه که محور چرخش زمین نسبت به حالت عمود بر صفحهٔ منظومهٔ شمسی کمی انحراف داره؛ یعنی شبیه فرفرهای هست که یه خرده کج باشه. بیاید به تصویر بالا نگاه کنیم. وقتی خورشید به صورت مایلتر به نیمکرهٔ شمالی زمین میتابه، فصل زمستان و وقتی تابش بهصورت عمودتر هست، فصل تابستان رو تجربه میکنیم؛ چون تفاوت توی زاویهٔ تابش خورشید باعث میشه ما توی یه مساحت مشخص از زمین، انرژی متفاوتی رو دریافت بکنیم؛ هرچقدر زاویهٔ تابش عمودتر باشه انرژی بیشتر، و هرچقدر زاویهٔ تابش مایلتر باشه انرژی کمتری بر واحد سطح از خورشید میگیریم.
ضمناً کجی محور زمین باعث میشه وقتی خورشید عمودتر میتابه، طول روز هم طولانیتر باشه، که خودش مزید بر علت میشه و فصل تابستون رو شاهد خواهیم بود. برعکسش هم برای فصل زمستون اتفاق میافته؛ زاویهٔ تابش آفتابِ مایلتر و طول روز کوتاهتر.
و یه نکتهٔ جالب دیگه اینکه توی نیمکرهٔ جنوبی، دقیقاً همهچیز برعکس نیمکرهٔ شمالی هست؛ یعنی وقتی ما داریم برنامهٔ شب چله رو برگزار میکنیم، اونجا، اول تابستونش هست. میتونید با کمک همون تصویر زاویهٔ تابش خورشید و استدلالهای بالا، خودتون ببینید چرا فصلها توی دو نیکره برعکسه.
قبل از اینکه وارد بحث حرکت ظاهری خورشید و تغییر طول روزهای سال بشیم، توی این قسمت میخوام بهطور خلاصه، کمی درمورد مسألهٔ کجی محور زمین صحبت بشه.
اصولاً اینکه چرا سیارات حول محوری به دور خودشون میگردن، برمیگرده به دوران شکلگیری منظومهٔ شمسی؛ وقتی که تودهٔ گرد و غبار پیشستارهای خورشید در حال چرخیدن و شکلگیری بود، بعضی از مناطق بیرونیتر هم که دورتر قرارگرفته بودن، موفق شدن مقداری از مواد اطرافشون رو ازطریق گرانش جذب کنن و گویچههایی رو به وجود بیارن که بهتدریج، هستهٔ اولیهٔ سیارات رو تشکیل دادن. این فرایند جذب یا انباشت مواد توسط سیارات، همراه با چرخش بوده. و بعد از اینکه همجوشی هستهای در مرکز خورشید اتفاق افتاده و اصطلاحاً خورشید شعلهور شده، این چرخش (یا به بیان دقیقتر تکانهٔ زاویهای)، همراه سیارات باقی مونده (اصل بقای تکانهٔ زاویهای). بهخاطر همین، سیارات علاوهبر حرکت مداری به دور خورشید، یک چرخش وضعی به دور خودشون هم دارن.
حالا اینکه چرا محور چرخش به دور خودشون، کمی نسبت به عمودِ صفحهٔ منظومهٔ شمسی انحراف داره، احتمالاً بهدلیل برخوردهای شدیدی بوده که توی دوران شکلگیری منظومهٔ شمسی اتفاق میافتاده. سیارات بهشدت، توسط تکهسنگهای غولپیکر سرگردان بمباران میشدن. این برخوردها میتونستن باعث بشن که محور چرخش کمی جابهجا بشه.
محور زمین بهطور میانگین، حدود ٢٣.۴ درجه از حالت قائم انحراف داره. چون کره زمین توی قطبین کمی پخشرگی داره، نیروهای گرانشی که خورشید و ماه به زمین وارد میکنن، باعث حرکت تقدیمی زمین میشن؛ درواقع محور زمین با حفظ زاویهٔ انحراف خودش، حول محور عمود هم میچرخه؛ خیلی شبیه یه فرفره که همینطور که به دور خودش میچرخه، تلوتلو هم میخوره. البته هرکدوم از این تلو خوردنها حدوداً ٢۵٧٧٢ سال طول میکشه! شاید این رقم خیلی بزرگی بهنظر برسه، ولی دستکم باعث شده ستارهٔ قطبی که درست بالای قطب شمال کرهٔ زمین قرار داره و با استفادهٔ از اون میتونیم جهت شمال رو پیدا کنیم، تغییر کنه؛ الان ستارهای که بهعنوان ستارهٔ قطبی میشناسیمش ستارهٔ آلفای صورتفلکی دب اصغر هست، درحالیکه حدود سه هزار سال قبل از میلاد، ستارهٔ ثعبان توی صورتفلکی اژدها راهنمای جهت شمال بود.
اگه دقت کرده باشید، گفتیم کجی محور زمین «بهطور میانگین»، حدود ٢٣.۴ درجه هست. چون صفحه مداری ماه نسبت به صفحه مداری زمین به دور خورشید، حدود ۵ درجه انحراف داره، این موضوع باعث میشه کمی مقدار انحراف محور زمین تغییر کنه و با دوره تناوب حدود ١٨.۶ سال، بین بازه ٢٢.١ تا ٢۴.۵ درجه، متغیر باشه. در حال حاضر، مقدار کجی محور زمین ٢٣.٢۶ درجه هست. به این رقص محوری زمین، حرکت ناوشی یا ترقصی گفته میشه.
اگه ما در قسمتهای مختلف مدار زمین به خورشید نگاه کنیم، میبینیم که انگار موقعیت خورشید در طول سال نسبت به ستارههای پسزمینه (با فرض اینکه بتونیم ستارهها رو در طول روز هم ببینیم)، تغییر میکنه؛ فرض کنید محور زمین رو دایروی در نظر بگیریم، در نتیجه خورشید هر روز کمی کمتر از ١ درجه نسبت به ستارههای پسزمینه آسمون، به سمت شرق جابهجا میشه ( تعداد روزهای سال ٣۶۵ روز و یک دایره کامل ٣۶٠ درجه هست). به مسیر حرکت ظاهری سالیانه خورشید، دایرةالبروج میگن. بهخاطر همین است که انگار خورشید در ماههای مختلف، توی برجها یا صورتفلکیهای مختلفی قرار داره.
البته که طالعبینی اساس علمی نداره و خرافاته؛ ولی از اونجایی که متأسفانه توی قرن ٢١اُم هم هنوز عده زیادی به این خزعبلات اعتقاد دارن، جا داره این نکته رو عنوان کنم: تاریخ طالعبینی حدودا به ٣٠٠٠ سال پیش برمیگرده. برجهایی که مربوط به ماه تولد هستن از اون زمان تا الان، بهخاطر حرکت تقدیمی زمین، تغییر کردن. مثلا اگه شما فروردین ماهی و توی ادبیات طالع بینی برج حمل هستید، به این معنیه که خورشید در ماه فروردین، توی صورت فلکی حمل قرار داره. این درحالیه که الان دیگه خورشید توی این برج قرار نداره. بلکه در فروردین ماه توی صورت فلکی حوت هست. بنابراین زیاد توجهی به این اراجیف ماه تولد نکنید لطفاً! :))
بهخاطر کجی محور زمین، دایرةالبروج از استوای سماوی، ٢٣.۴ درجه انحراف داره (اگر استوای کره زمین رو ادامه بدید تا کره سماوی رو قطع بکنه، بهش استوای سماوی میگن). به محل تلاقی این دو دایره، اعتدالین گفته میشه. برای نیمکره شمالی، اگه خورشید در مسیر حرکت به سمت بالای استوای سماوی باشه، این نقطه اعتدال بهاری (آغاز فصل بهار)، و اگه در مسیر حرکت به سمت پایین استوای سماوی باشه، این نقطه اعتدال پاییزی (آغاز فصل پاییز) هست. همچنین وقتی که خورشید در بالاترین نقطه دایرةالبروج نسبت به استوای سماوی قرار داره، انقلاب تابستانی (آغاز فصل تابستان) و هنگامیکه در پایینترین نقطه دایرةالبروج نسبت به استوای سماوی هست، انقلاب زمستانی (آغاز فصل زمستان) بهش گفته میشه.
موقع اعتدال بهاری و پاییزی، خورشید دقیقاً از سمت شرق، طلوع و از سمت غرب، غروب میکنه؛ بنابراین دو بار در طول سال، این امکان وجود داره که بتونید جهتهای جغرافیاییتون رو، بهوسیله خورشید چک بکنید (البته در واقعیت، چون نقاط اعتدالین تنها در یک لحظه اتفاق میافتن ـ که لزوماً هم در لحظه طلوع یا غروب خورشید نیست ـ بنابراین مکان طلوع و غروب خورشید از محل دقیق شرق و غرب، مقدار ناچیزی اختلاف داره که میشه ازش صرفنظر کرد).
اما همین طور که از نقاط اعتدالین فاصله میگیریم، محل طلوع و غروب خورشید هم از شرق و غرب فاصله میگیره و بهسمت شمال یا جنوب متمایل میشه؛ اگه شما روی استوای زمین قرار داشته باشید، در انقلاب تابستانی، خورشید از ٢٣.۴ درجهای شمال شرق، طلوع و در ٢٣.۴ درجهای شمال غرب، غروب میکنه. برعکس، در انقلاب زمستانی، طلوع خورشید در ٢٣.۴ درجهای جنوب شرق، و غروبش در ٢٣.۴ درجهای جنوب غرب هست. بنابراین روی استوا، حداکثر انحراف محل طلوع یا غروب خورشید از شرق یا غرب، ٢٣.۴ درجه هست که در انقلاب تابستانی و انقلاب زمستانی رخ میده.
اما اگر روی خط استوا زندگی نکنید یک مقدار داستان فرق میکنه؛ در اینصورت، برای محاسبه مقدار زاویه انحراف محل طلوع و غروب خورشید از شرق و غرب جغرافیایی، باید یک فاکتورِ (عرض جغرافیایی) sec هم در اون ضرب کنید (عرض جغرافیایی، زاویه مختصاتی هست که مکان شمالی/جنوبی یک نقطه روی سطح زمین رو نشون میده و از صفر درجه در استوا، تا نود درجه شمالی/جنوبی در قطب شمال/جنوب، متغیره). مثلاً شهر تهران در عرض جغرافیایی ٣۵ درجه شمالی قرار داره. بنابراین حداکثر میزان انحراف، 23.5 * (35)sec ، حدوداً ٢٨.۶٨ درجه هست. هرچند که این یه فرمول تخمینیه، اما تا عرضهای جغرافیایی ۵٠ درجه، معتبره (اگه علاقهمند به محاسبات کامل با استفاده از هندسه کروی هستید، به اینجا مراجعه کنید).
خب، فکر میکنم تا الان تقریبا به این سوال جواب داده شده باشه که چرا شب یلدا ـ که معادل با انقلاب زمستانی هست ـ طولانیترین شب ساله. با توجه به توضیحاتی که درمورد حرکت ظاهری سالیانه خورشید داده شد، حداکثر ارتفاع خورشید نسبت به افق در طول سال تغییر میکنه و زمان انقلاب زمستانی به حداقل، و زمان انقلاب تابستانی به حداکثر مقدار خودش میرسه. بنابراین در انقلاب زمستانی، خورشید مسیر کوتاهتری (دایره عظیمه کوچکتری) رو باید توی آسمون طی بکنه و در انقلاب تابستانی، روی مسیر بلندتری (دایره عظیمه بزرگتری) حرکت بکنه. هنگام اعتدال بهاری و پاییزی که حد وسط انقلابین هستن، طول روز و شب در همه جای دنیا برابره. یعنی تقریبا ١٢ ساعت روز و تقریبا ١٢ ساعت شبه.
البته، به دو دلیل، طول روز در زمان اعتدالین، یک مقداری بلندتر از طول شب هست. اولاً در زمان اعتدالین، مرکز هندسی خورشید ١٢ ساعت بالای افق هست؛ در حالیکه طلوع خورشید، طبق تعریف، لحظهایه که لبهی بالایی قرص خورشید از افق پیدا میشه (و نه مرکز خورشید)؛ و غروب خورشید هم به همین صورت، لحظهایه که لبه بالایی قرص خورشید میره زیر افق و دیگه دیده نمیشه. بنا بر این تعریف، طول روز مقداری بیشتر از ١٢ ساعت هست. علت دوم اینکه؛ به علت شکسته شدن نور خورشید توی جو زمین، ما موقع طلوع خورشید، لبه بالایی قرصش رو زودتر میبینیم، و موقع غروب، لبهی بالایی رو حتی بعد از اینکه خورشید غروب کرده هم مشاهده میکنیم. این پدیده، باعث میشه، طول روز، حدود ۶ دقیقه (بسته به اینکه دما و فشار هوا بصورت موضعی چقدر توی ارتفاعات مختلف تغییر میکنه) بیشتر از زمانی باشه که اثر شکست نور توی جو وجود نداره. بهخاطر این دو دلیلی که ذکر شد، زمان اعتدال بهاری و پاییزی، طول روز چند دقیقه بلندتر از طول شب هست.
تصویری که میبینید، حرکت ظاهری خورشید در طول ساله که معروف به آنالمای خورشیدی هست.
داستان از این قراره که اگه توی یک ساعت خاصی از روز، مثلاً ١٢ ظهر، در طول سال از خورشید عکسبرداری کنید، میبینید که شبیه عدد هشت انگلیسی میشه. اگه امکانات عکسبرداری براتون مقدور نیست، میتونید یک میله شاخص نصب کنید و انتهای سایهی اون رو در یک ساعت خاص، در طول سال علامتگذاری کنید (دقت کنید که اگه ساعت رسمی کشور عقب یا جلو رفت، شما طبق همون ساعت قدیم خودتون عمل کنید). در نهایت، شکل آنالما بهدست میآد.
اگر به تصویر دقت کنید، میبینید که خورشید، هم به سمت بالا و پایین، و هم به سمت راست و چپ حرکت کرده. علت اینکه خورشید در طول سال ارتفاعش تغییر میکنه رو که قبلاً بررسی کردیم. ولی به نظرتون چرا باید خورشید به سمت راست و چپ هم حرکت بکنه؟ علتش اینه که مدار زمین به دور خورشید بیضوی هست و نه دایروی. بنابراین در تصویر آنالمای خورشیدی، یک کشیدگی به سمت شرق و غرب هم دیده میشه.
دوست دارم در پایان، این بیت از غزلی رو که از دوست خوبم مرتضی استاد عظیم هست، تقدیمتون کنم:
کمی آرام شو دیگر، تو ای شب زندهدار عشق!
که یلدا هم سحر دارد و آخر سر به سر آید…
داستان معروف سیبی که از درخت افتاد و به سبب اون نیوتون کشف کرد که زمین جاذبه داره رو همه از بریم. این داستان چندان واقعی نیست نیوتون سالها توی اتاقش داشت با انواع و اقسام روابط سر و کله میزد تا بالاخره تونست که فیزیک جدیدی رو پایهگذاری کنه و واقعا با یک سیب نبود که نظریهای متولد شد.
اگه گرانش رو به زبان خیلی ساده بخوام بگم، میشه فرمولبندی نیوتون از حرکات سیارهها. قبلتر از نیوتون فردی به نام کپلر سه قانون رو در مورد حرکات سیارهها پیدا کرده بود.کپلر معتقد بود که سیارهها دارن در مدارهایی بیضوی به دور خورشید میچرخند که خورشید در یکی از کانونهای بیضی قرار گرفته.. زمانی که سیاره به خورشید نزدیکتره با سرعت بیشتری حرکت میکنه نسبت به زمانی که از خورشید دورتره و رابطه ی بین فاصله سیارات از خورشید و پریود حرکتشون هم به دست آورده بود.
بعدتر از کپلر، نیوتون حرکات سیارات رو با صورت بندی گرانش ارائه کرد. نیوتون میگفت گرانش یک نیروی بلندبرده و بین اجرام مختلف برقراره. اگر دو تا جرم مختلف به نحوی بتونن همدیگه رو مشاهده کنن،شروع میکنن به جذب کردن همدیگه. شدت نیرویی هم که حس میکنن متناسب با حاصل ضرب جرمشون تقسیم بر مجذور فاصله دو تا جرم از همدیگه است.
این تا اوایل قرن نوزده بهترین تصویر ما از جهان بوده. اینکه اجرام به شکلی پراکندهاند در جهان و طبق گرانش نیوتونی رفتار میکنن. اما از اونجایی که علم همواره در حال تحوله و تصویر ما از جهان ثابت نمیمونه، شواهدی پیدا شدن که باعث شد دانشمندان درباره ی این نظریه به تردید بیفتند.اوایل قرن نوزدهم اینشتین با ارائه نظریه نسبیت عام تصویر جدیدی از جهان رو ارائه کرد.در این نظریه گرانش نه یک نیرو که یک ویژگی از فضا- زمان درنظر گرفته میشه.تغییرات در فضا-زمان هم به دلیل پراکندگی اجرام در فضا به وجود میاد.یک مثال آشنا از این اجرام میتونه سیاهچاله ها باشند. سیاهچاله ها در واقع بخشی از فضا زمان هستند که حتی نور هم امکان گریختن از افق رویداد سیاهچاله ها رو نداره. معادلهی میدان در نسبیت عام با رابطهی زیر نشون داده میشه.
سمت چپ این معادله تانسور انیشتین رو میبینید. این تانسور درواقع حامی تمام اطلاعات هندسهی فضا- زمان هست.سمت راست معادله هم تانسور انرژی- تکانه رو میبینید. که درواقع حاوی تمام اطلاعات یک جرم گرانشی یا بهتر بگم یک ماده است.این جرم گرانشی میتونه زمین باشه، ستاره نوترونی باشه، یا حتی یک سیال باشه.
نسبیت عام موفقیتهای چشمگیری تا به امروز داشته. پیشبینی امواج گرانشی، توصیف سیاهچالهها، سفر در زمان و… همگی از دستاوردهای نسبیت عام هستند.اما نسبیت عام در اواسط قرن بیستم و بعدتر با چالشهای جدی مواجه شد. همین اتفاق باعث شد که دریچهی جدیدی به سوی گرانش باز بشه و نظریات جدید گرانشی متولد بشن.
اینشتین وقتی معادلهی میدان گرانشی در نسبیت عام رو نوشت با یک سوال مواجه شد. چرا جهان تحت گرانش خودش فرو نمیریزه؟ نیوتون برمبنای بینهایت بودن و همسانگردی جهان مطمئن بود که جهان تحت گرانش خودش فرو نمیریزه. نیوتون بر مبنای این فرضیات معتقد بود که هر نقطه از جهان نیروی برابری رو حس میکنه، بنابراین جهان هرگز تحت گرانش فرونمیریزه. انیشتین برای رفع این مسئله جملهای رو دستی وارد معادلاتش میکنه. این جمله به صورت یک نیروی دافعهی کیهانی، که به عنوان ثابت کیهانشناسی معرفی شده، وارد این معادلات میشه. جالبه بدونید اینشتین بعدها از این کارش به عنوان یک اشتباه بزرگ یاد میکنه.
بعد از وارد شدن جمله ی ثابت کیهان شناسی معادلهی میدان اینشتین به فرم زیر در میاد.
$$G_{\mu \nu}+ \Lambda g_{\mu \nu}=T_{\mu\nu}$$
با فرض عدم وجود ماده، یعنی در حالتی که مقدار تانسور انرژی- تکانه در این معادله صفر باشه، میتونیم به جملهی ثابت کیهانشناسی انرژی خلا رو نسبت بدیم. در این حالت لمبدا رو معادل چگالی انرژی خلا میدونیم.
اما مشکلی که تا به امروز هنوز حل نشده چی بود؟
ما باید بدونیم مقدار این ثابت کیهان شناسی چقدره و از چه مرتبهایه. نظریهی میدانهای کوانتومی مقداری رو که برای انرژی خلا پیشبینی میکنه بسیار بسیار بیشتر از عددی است که از رصدها بدست میاد. چیزی در حدود شصت تا صد و بیست مرتبهی بزرگی بزرگتر. همین اختلاف مقدار در نظریه و رصد باعث شد نظریات جدید گرانشیای متولد بشن تا شاید این مشکل رو حل کنند.
مشکل بعدیای که نسبیت عام نتونست از پسش بربیاد مسئلهی ماده تاریک بود. اگه بخوام مختصرا بگم ماجرای ماده تاریک از کجا جدی شد، باید برگردیم به رصدهایی که انجام شده و مهمترین شاهد حضور ماده تاریک نمودارهای سرعت چرخش ستارهها و کهکشانها بودند.ما از گرانش نیوتونی میدونیم که سرعت حرکت دایرهای یک ستاره از رابطهی زیر بدست میاد.
در این رابطه G ثابت جهانی گرانش، M جرم محصور و r فاصله شعاعی است. برای فواصل بیشتر از دیسک کهکشانی قانون گاوس بیان میکند که با فرض اینکه تمام جرم در مرکز محصور شده در فواصل دور مقدار جرم ثابته و سرعت باید با r-1/2 کاهش پیداکنه. اما آن چیزی که رصدها نشون میده چنین نیست. رصد ها میگه از فاصله ای به بعد سرعت حرکت به مقدار ثابتی میل میکنه. انگار که برخلاف اون چیزی که از قانون گاوس میدونیم، جرم اینجا متغیره و داره با فاصله تغییر میکنه. در واقع تغییرات جرم متناسب با تغییرات فاصله است. این جرم اضافی از کجا میاد؟ به نظر میاد این وسط مادهای فراتر از مادهی مرئی وجود داره که بهش میخوایم بگیم مادهی تاریک. مادهی مرموزی که خیلی خوب نمیشناسیمش. وجود داره ولی مشاهده نمیکنیمش. برهمکنش نمیکنه و هرجایی خودش رو نشون نمیده، اما این وسط داره تو معادلاتمون و در کیهانشناسی نقش مهمی بازی میکنه.
نظریات گرانشیِ بعد از نسبیت عام تلاش هایی برای توصیف ماده تاریک هم داشته اند. البته عدهای از فیزیکدانان انرژیهای بالا معتقدند که ماده تاریک واقعا به صورت ذراتی وجود داره. و تلاشهای زیادی چه از بابت نظری و چه عملی برای توصیف و آشکارسازی ذرات ماده تاریک کردهاند.
نظریات جدید گرانشی که عمدتا ازشون به عنوان گرانش تعمیم یافته یاد میشه، اضافه کردن درجات آزادی به نظریهی نسبیت عام هست. در واقع ماجرا از این قراره که فیزیکدانان تلاش میکنن با اضافه کردن درجات آزادی به کنش نسبیت عام راهی پیدا کنند که بتونن سوالاتی که نسبیت عام نمیتونه بهشون پاسخ بده رو پاسخ بدن. این درجات آزادی در سادهترین حالت میتونه اضافه کردن یک میدان اسکالر باشه. یا عدهای هم دوست دارن بردار، تانسور یا میدانهای با رنک بالاتر اضافه کنند به این کنش. هر مدلی از گرانش که ساخته میشه باید تستپذیر باشه. یعنی نتایجی که پیشبینی میکنه با نتایج آزمایش و رصد سازگار باشه. و اساسا قابلیت در معرض آزمایش قرارگرفتن رو داشته باشه.
از دل این تلاشها مدلهای زیادی برای توصیف جهان ساخته شده اند، که اینجا مختصرا اشاره میکنم و در پستهای بعدی بهشون میپردازم.نظریههای اسکالر-تانسور، دینامیک تعمیم یافته نیوتونی، نظریهی انیشتین- اِتِر، نظریههای بایمتریک، نظریههای f(R )، گرانش غیر موضعی و گرانش ابعاد بالا مشهورترین نظریههای گرانشی اند.
سرنوشت نظریات گرانشی به کجا رسیده؟
هنوز فیزیکدانان در حال تلاشاند تا بتونن برای سوالاتی که مطرح شده نظریهای بسازند که پاسخ سوالاتشان رو بده. برای محقق شدن این امر نیاز به ایدههای بهتر و دادههای رصدی و آزمایشگاهی بیشتر دارن.
پی نوشت:
«در ۱۹۸۱ میلادی، مدل تورم توسط آلن گوت، برای پاسخ به چند مشکل اساسی در نظریه مهبانگ داغ، ارایه شد.»
نظریه مهبانگ داغ از جهات زیادی، یک نظریهی موفقیتآمیز بوده و همخوانی زیادی با مشاهدات رصدی داشته است که بهطور خلاصه میتوان به موارد زیر اشاره کرد:
اما با وجود این موفقیتها، نظریهی مهبانگ داغ نمی تواند به چند پرسش اساسی پاسخ دهد؛ اول آنکه چرا کیهان در مقیاسهای بزرگ تا این اندازه همگن و همسانگرد است؟ با نگاه کردن به طیف تابش زمینهی کیهانی میتوان دریافت که نقاط مختلف آسمان، با دقت زیاد(از مرتبهی یک در صد هزار)، در همهی جهات دارای ویژگیهای کاملا یکسان هستند. به طور معمول برای آنکه دو جسم شبیه به هم باشند، باید زمانی با یکدیگر در تماس بوده باشند تا اصطلاحا به تعادل گرمایی برسند. به عنوان مثال وقتی یک لیوان چای داغ را در محیط اتاق قرار دهید، پس از مدتی با محیط همدما شده و به تعادل گرمایی میرسند. اما دو نقطه در جهت مقابل یکدیگر در آسمان که نورشان از دوران واجفتیدگیِ نور و ماده به ما میرسد، نمیتوانند روزی در تماس با هم بوده باشند؛ چرا که نور هر یک، از آن زمان تا به حال در راه بوده تا تنها به نقطهای که ما قرار داریم برسد.
حال آنکه حداقل به همان اندازه زمان نیاز بوده است تا بتواند با نقطهی دیگر برهمکنش داشته باشد. البته با انجام محاسبات، میتوان نشان داد که حتی دو نقطه در فاصلهی زاویهای حدود دو درجه در آسمان نیز زمان کافی برای رسیدن به تعادل گرمایی را نداشتهاند؛ زیرا دو نقطه، باید پیش از دوران واجفتیدگی به تعادل گرمایی رسیده باشند. دورهی واجفتیدگی به دورهای گفته میشود که به علت گسترش فضا و در نتیجه کاهش دمای کیهان، انرژی فوتونها به اندازهای کاهش یافته است که از آن پس، فوتونها دیگر با هستههای اتم برهمکنش نداشته و آزادانه در فضا منتشر شده اند. تا پیش از آن، فوتونها به علت پراکندگی زیاد از هستهها، قادر به طی کردن مسافتهای طولانی نبودند. بنابراین از آنجایی که برای برهمکنش دو نقطه با یکدیگر، نور باید مسافت بینشان را بپیماید، نسبت به حالت عادی بعد از این دوره، زمان بیشتری نیاز است تا به تعادل گرمایی برسند. این پرسش که چرا طیف تابش زمینهی کیهانی در همهی جهات تقریبا یکسان است، معروف به مسألهی افق میباشد.
پرسش دیگر موسوم به مسألهی تخت بودن، در مورد هندسهی کیهان است. طبق مشاهدات رصدی به خصوص تابش زمینهی کیهانی، جهان تقریبا تخت است. در واقع هندسهی فضا ـ زمان با همان هندسهی آشنای اقلیدسی یا به بیان دیگر متریک مینکوفسکی توصیف میشود؛ طبق نظریهی نسبیت عام انیشتین، فضا ـ زمان میتواند بسته به توزیع چگالی مادهي (یا انرژی) درون آن، دارای انحنا باشد.
اگر چگالی ماده در جهان کمتر از مقدار معینی موسوم به چگالی بحرانی باشد، انحنا منفی بوده و جهان باز است؛ در واقع کیهان تا ابد به گسترش خود ادامه خواهد داد. اگر چگالی کل ماده از چگالی بحرانی بیشتر باشد، انحنا مثبت بوده و اصطلاحا جهان بسته است؛ به عبارت دیگر، گسترش کیهان پس از مدتی متوقف شده و شروع به رمبش میکند تا به نقطهی تکینگی یا مهرُمب برسد. در حالتی که چگالی ماده در کیهان با چگالی بحرانی برابر است، با جهانی تخت رو به رو هستیم که انحنای آن صفر میباشد. همچنین به نسبتِ چگالی کل کیهان به مقدار چگالی بحرانی آن در هر زمان، پارامتر چگالی گفته میشود. طبق تعریف های بالا میتوان به سادگی دریافت، در صورتی که این پارامتر برابر یک باشد، جهان تخت است و اگر بزرگتر یا کوچکتر از یک باشد، به ترتیب انحنای فضا ـ زمان، مثبت و منفی خواهد بود. طبق آخرین دادههای رصدی، مقدار پارامتر چگالی در حال حاضر بسیار به یک نزدیک بوده و جهان با دقت نیم درصد تخت است. با حل معادلات میتوان نشان داد که با گذشت زمان، انحراف از تخت بودن افزایش مییابد، بهطوریکه کوچکترین انحراف از تختی در دوران اولیهی کیهان، خیلی زود به جهانی با انحنای غیر صفر میانجامد. بنابراین با توجه به مقدار کنونیِ پارامتر چگالی، هر چه به زمانهای عقبتر برویم، مقدار این پارامتر به یک نزدیکتر شده و جهان به تخت بودن، نزدیک و نزدیکتر میشود.
مثلا در دوران واجفتیدگی (سیصد و هشتاد هزار سال بعد از مهبانگ)، اختلاف پارامتر چگالی از عدد یک، از مرتبهي یک در صد هزار است. در دوران هسته سازی (یک ثانیه پس از مهبانگ)، این مقدار از مرتبهی یک در یک میلیارد میلیارد بوده و در مقیاسهای انرژی الکتروضعیف (یک هزار میلیاردم ثانیه بعد از مهبانگ)، کیهان با دقتِ یک در هزار میلیارد میلیارد میلیارد، تخت بوده است!
پرسشی که در اینجا مطرح میشود این است که چرا کیهان باید با مقدار اولیهای تا این اندازه نزدیک به تخت بودن، آغاز شده باشد. گویی که کیهان دارای تنظیمی ظریف است. هر اختلاف ناچیزی از این مقدار اولیه، میتوانسته به تفاوتی فاحش منجر شده و کیهان را به شکلی دیگر درآورد.
این دو پرسش یعنی مسألهی افق و مسألهی تخت بودن، توسط یاکوف بوریسوویچ زلدوویچ، در اوایل دههی ۱۹۷۰ میلادی مطرح شد. وی چند سال بعد، در ۱۹۷۸ میلادی، مسألهی دیگری با عنوان مسألهی تکقطبی مغناطیسی را مطرح کرد که در واقع نوع دیگری از همان مسألهی افق است که در فیزیکِ ذراتِ بنیادین مطرح میشود. طبق پیشبینی نظریههای مدرنِ ذرات، یک سری از ذرات یادگاره که در دوران آغازین کیهان تولید شدهاند، باید در کیهان امروزی نیز وجود داشته باشند. این یادگارهها شامل موارد زیر هستند:
هر چند که در ابتدا، مسألهی تکقطبیهای مغناطیسی که از نتایج نظریهی وحدت بزرگ هستند مطرح شد، اما این بحث برای بقیهی یادگارهها نیز برقرار است. تکقطبی مغناطیسی نسبت به ذراتی مانند پروتون بسیار سنگینتر بوده و بههمینخاطر باید در زمانهای نزدیک به ما به صورت غالب در کیهان ما حضور داشته باشند. این در حالی است که تا به امروز هیچ تکقطبی مغناطیسی در جهان مشاهده نشده است!
سه سال بعد، آلن گوت، مدل تورم را برای پاسخ به مسألهی تکقطبی مغناطیسی پیشنهاد داد. اما خیلی زود مشخص شد که این مدل میتواند پاسخگوی بقیهی پرسشها نیز باشد. ایدهی مدل تورم بسیار ساده است؛ جهانِ خیلی آغازین، دستخوش گسترشی بسیار بزرگ شده است. در واقع در بازهی زمانی ۱۰−۳۶ تا حدود ۱۰−۳۲ ثانیه پس از مهبانگ، کیهان به صورت نمایی گسترش یافته، بهطوری که در این بازهی زمانی بسیار کوتاه، از چیزی بسیار کوچکتر از یک اتم تا حدود اندازهی یک توپ بسکتبال، افزایش حجم پیدا کرده است! گسترش بسیار سریع کیهان در دورهی تورم، موجب شد تا ذرات یادگاره رقیق شوند؛ بدین ترتیب، مقدار آنها در کیهان امروزی قابل اغماض خواهد بود. همچنین دو نقطهای که در حال حاضر در فاصلهي زیاد از یکدیگر قرار دارند، در زمان پیش از تورم، قادر بودهاند در تماس با یکدیگر باشند؛ چرا که تورم باعث دور افتادن آنها از یکدیگر با سرعتی بسیار بیشتر از سرعت نور شده است. بنابراین دو نقطهی به ظاهر غیر مرتبط با یکدیگر در زمان کنونی، پیش از تورم در تعادل گرمایی بودهاند. در مورد مسألهی تخت بودن نیز اینطور میتوان بیان کرد که به علت کشآمدگی زیادِ کیهان در این دوره، هر گونه انحنای اولیهی فضا ـ زمان، به جهانی بسیار نزدیک به جهانِ تخت منجر شده تا آنجا که امروز نیز کیهان تقریبا تخت است. تنها در آیندهای دور است که بار دیگر پارامتر چگالی از مقدار یک فاصله خواهد گرفت.
علاوه بر موارد یاد شده، امروزه میدانیم مدل تورمی، نقش مهمی در توصیف منشأ ساختارها در کیهان و وجود ناهمسانگردیهای موجود در طیف تابش زمینهی کیهانی دارد؛ همانطور که پیشتر اشاره شد، طیف تابش زمینهی کیهانی کاملا همگن نیست، بلکه افت و خیزهای دمایی ناچیزی از مرتبهی یک در صد هزار، در آن مشاهده میشود. احتمالا این افت و خیزها توسط نیروی گرانش تقویت شده و بنابراین مناطقی با چگالی بیشتر و بیشتر به وجود آمدهاند که هستههای اولیه برای اولین ستارگان را تشکیل داده و بعدها منجر به ساختِ ساختارهای بزرگتر مانند کهکشانها، خوشههای کهکشانی و نهایتاً ابرخوشهها در کیهان شدهاند.
طبق مدل تورم، طی این دوره، افت و خیزهای کوانتومی اولیه در خلأ، با کش آمدن کیهان، تبدیل به افت و خیزهای کلاسیک شدند و ناهمسانگردیهای موجود در طیف تابش زمینهی کیهانی را به وجود آوردند.
در پایان، باید به این نکته توجه داشت که مدل تورم به عنوان رقیبی برای نظریهی مهبانگ داغ نیست، بلکه در دوران خیلی آغازینِ کیهان اتفاق افتاده و نظریهی مهبانگ داغ، برای زمانهای بعد از این دوره، با تمام موفقیت هایش در توصیف کیهان، صادق است.
در قلب توده بزرگی از مادهی تاریک، در نقطهای از کهکشان مارپیچی بزرگمان، بر روی سیارهی خارقالعادهای که به دور خورشید با شکوهمان میچرخد، در ادامهی زنجیرهای که هنوز تنها اثری از حیات زنده در کیهانمان است، ما نیز شروع به زندگی کردیم. به عنوان گونهای با قدرت تفکر، همیشه به دنبال زبانی برای برقراری ارتباط با محیط اطرافمان بوده و هستیم. گاه با هدف رفع نیاز، گاه برای رفع حس کنجکاوی سیری ناپذیرمان و حتی گاهی در اثر ترس! اما هدف هرچه بود و هرچه هست، امروز درجای عجیبی از تاریخ علم ایستادهایم و با غرور به جهانی نگاه میکنیم که نه آنطور که ما دلمان میخواهد، بلکه آن گونه که واقعا هست، در برابر ما ایستاده است.
ما همیشه میخواستیم با طبیعتمان سخن بگوییم، و در طول تاریخ، فیزیک راهی بود که برای این هدف انتخاب کردیم. فیزیک زبان مشترک ما و طبیعت شد. ما مشاهده میکردیم، بعدها یاد گرفتیم ثبت کنیم، بر پایهی مشاهداتمان فرضیه سازی کردیم و جلو رفتیم. زمینمان را تخت تصور میکردیم، هر کدام از سیارات و ستاره ها را خدایی میپنداشتیم که باید نیایش کنیم، وگرنه بر ما عذاب میفرستند. در ذهنمان خدایان ناشناختهای ساختیم که شب و روز را پدید میآوردند. خدایانی که غروب خورشید را میخوردند و صبح باز او را به دنیا میآوردند. خدایانی که صبح از شرق برمیخاستند، در طول روز در آسمان سیر میکردند و غروب مانند پیرمردان در بستر میمردند. رعد و برق، خشم خدایان بود و زلزله خشم مادرمان زمین.
فرضیه ساختیم، خیالبافی کردیم و جلو آمدیم. سفر کردیم، اختراع کردیم، تا آنجا که زمین و آسمان را هر روز بهتر و بهتر شناختیم. فرضیاتمان به مرور حقیقیتر میشدند، از محیطمان به زیباترین وجه استفاده میکردیم، ویژگیهایش را میدانستیم، دارو میساختیم، ظروف زیبا، وسایل نقلیه، ساختمانهای باشکوه ، اما هنوز پیوند عمیقی برقرار نبود. با طبیعتمان به زیبایی زندگی میکردیم اما زبانش را نمیدانستیم. همیشه نگاهمان به آسمان هم معطوف بود. آسمان پر رمز و راز را میدیدیم. ستارگانی را که هر شبمان را زیبا میساختند، در صورتهای فلکی دسته بندی کردیم. علم اخترشناسی را به جود آوردیم و هر شب آسمان را رصد میکردیم. همه چیز را میدیدیم، اما هنوز علتها ناشناخته بود.
بطلمیوس که بین سالهای ۹۰ تا ۱۶۸ میلادی زندگی میکرد، معتقد بود زمین در مرکز جهان قرار دارد، و ماه و خورشید و سایر سیارات، به دور آن میچرخند. در این نظریه، سیارات مداری نداشتند و انگار بر روی صفحهای شیشهای به نام فلک چسبیده بودند و فلک به دور زمین در گردش بود. او معتقد بود که ۸ یا ۹ فلک وجود دارد و بر روی فلک آخر، ستارهها چسبیدهاند.
پس از این فلک، که به آن فلک الافلاک میگفتند، خداوند و فرشتگان زندگی میکردند. این نظریه که به آن زمین مرکزی میگویند شاید یکی از نخستین نظریات جامع و منسجم ما درباره ی کیهانمان بود. این باور نزد ما پذیرفته شده بود. ما در مرکز جهان هستی، بر روی سیارهی زیبایمان نشسته بودیم و همه به دور ما میگشتند. کلیسا نیز این فرضیه را بشدت تبلیغ میکرد. خیالی خوش و پرغرور اما ناپایدار. تا بالاخره در تاریخمان گالیله پیدا شد. او بود که گفت نه تنها ما مرکز جهان نیستیم، بلکه ما و چند سیارهی دیگر همه و همه به دور خورشید زیبایمان میگردیم. او نگاه ما را به طبیعت و به ویژه علم مکانیک دگرگون کرد، و در یک کلام، او نخستین پیوند میان طبیعت و ریاضیات را در قلب علم حرکت شناسی نشان داد. وقتی به او فکر میکنم، و به جهانی که پیش از او میشناختیم، تصمیم و کار بزرگش بسیار ترسناک به نظرم میرسد. تصور کنید در خانهای نشستهایم، دیوارهایش را با رنگهای بسیار زیبا نقاشی کردهایم و تصور میکنیم تمام حقیقت، هرآن چیزی است که در نقاشیهایمان کشیدهایم. ناگهان مردی از راه میرسد، دیوارها را خراب میکند،نقاشیها را میسوزاند، ما را وسط تاریکی بیانتهایی رهایمان میکند و تنها مشعلی به دستمان میدهد. او نمیداند نتیجهی جستجویمان چه خواهد بود، اما باور دارد حقیقت بسیار زیباتر و موثرتر از تمام نقاشیهایمان بر در و دیوار خانهمان است. او به درستی و زیبایی حقیقت باور دارد. ما این مشعل را گرفتیم و جلو آمدیم.
مفهوم گرانش را فهمیدیم. حرکت سیارات را توجیه کردیم. مهندسی نوینی بر پایهی معادلاتش بنا کردیم. علم مهندسی هر روز زندگی را سادهتر میکرد. اما سوالات ما پایانی نداشت. مطالعه بر روی نور از زمان نیوتون جدیتر دنبال میشد. تلسکوپ گالیله که یکی از دستاوردهایش کشف چند قمر از اقمار مشتری بود، به وسیلهی نیوتون اصلاح شد و کار رصد آسمان را اندکی بهبود بخشید. همچنین مطالعهی ما بر روی الکتریسته و مغناطیس روز به روز بیشتر میشد و کسانی ماند لنز، فارادی، آمپر و دیگران ماهیت بار الکتریکی را معرفی کردند. سرانجام دوران طلایی فیزیک فرا رسید. در اواخر قرن نوزدهم، تامسون مدل اتمیاش را ارائه کرد. رادرفورد اولین بار مفهوم هسته را معرفی کرد. پروتونها و نوترونها شناخته شدند و سرانجام مدل سیارهای توسط نیلز بور ارائه شد. مدلی که اگر درست بود بنابر نظریهی الکترومغناطیس، به ناپایداری اتمها و نابودی اتم منجر میشد. در این زمان بشر به آزمایشهایی دست میزد که یکی پس از دیگری ناتوانی فیزیک نیوتونی را در توضیح مسائلی روشنتر میساخت. اینطور به نظر میرسید که باز راهمان را گم کردهایم.
ما میدانستیم ماشینهایمان، هواپیماها و تمام علم ساختمان، بر پایهی فیزیک نیوتونی دقیق و زیبا کار میکنند و جلو میروند. اینجا بود که به اصل بسیار زیبای همخوانی رسیدیم. اصلی که سنگ بنا و شرط اساسی تمام نظریاتمان شد:
اگر نظریه ی جامعی ارائه میشود، این نظریه باید در شرایط خاصی که مکانیک نیوتونی برقرار است، معادلات نیوتون را بدست دهد.
برای مثال، اگر به دنبال نظریهی جامعی هستیم که قلب اتم را نیز برایمان توضیح دهد، چنانچه در معادلاتمان باز از اتم به اجسام عادی و سرعتهای معمولی رسیدیم، باز معادلات باید همان معادلات نیوتون شوند. و این اصل چراغ راهمان شد. تابش جسم سیاه، اثر فوتوالکتریک، اثر کامپتون و … هر یک بیش از پیش ما را به سمت نظریهی شگفتانگیز کوانتوم سوق داد.
با مکانیک نیوتونی و درک ماهیت موجی-ذرهای در ابعاد کوانتومی، هایزنبرگ ، شرودینگر و دیراک زبانی ساختند بسیار مدرن که ما را به اعماق ماده راه داد. در اوایل قرن بیستم بود که اینیشتین با تئوری زیبای نسبیت خاصش از راه رسید. نظریهای که در پاسخ به مسئلهی یکسان بودن سرعت نور نسبت به هر ناظر لخت با هر سرعتی نوشته شده بود. این نظریه نشان داد که در سرعتهای بالا، زمان هم از نگاه ناظرهای مختلف متفاوت است و به این صورت، مفاهیم قدیمی فضا و زمان به هم گره خوردند و مفهومی بنیادیتر به نام فضا-زمان شکل گرفت. اما زیبایی بینظیر معادلات نسبیت خاص درآن بود که اگر سرعت متحرک نسبت به سرعت نور کم میبود -مثلا در حد سرعت حرکت ما و وسایل نقلیهمان- معادلات باز به همان معادلات آشنای نیوتون میرسید. پس ظاهرا ما همه چیز را میدانستیم. در قلب ماده مکانیک کوانتوم جواب سوالاتمان را میداد. برایمان هسته و اتم را توضیح داد. اتم شکافتیم. انرژی گرفتیم و با توحشی که هنوز در وجودمان تمامی ندارد بمب ساختیم. در سرعتهای بالا، معادلات نسبیت حلال مشکلاتمان شد و هنگامی که سرعت کم میشد و ابعاد ماده به ابعاد معمولی میرسید، معادلات نیوتون زندگی روزمرهمان را پاسخگو بود.
آیا گرانش همانگونه که نیوتون تصور کرده بود، شکلی از نیرو بود؟ و این باز آلبرت اینیشتین بزرگ پس از حدودا یک دهه از ارائهی نسبیت خاص، نسبیت عام را مطرح کرد و از گرانش نه به عنوان یک نیرو که به عنوان اثری هندسی نام برد. در واقه آنچه به عنوان نیروی گرانشی میشناسیم چیزی نیست جز خمیدگی فضا-زمان در اثر وجود ماده. از دل این تئوری ، سیاهچالهها، کرمچالهها و امواج گرانشی سربرآوردند. ترکیب این نظریه با شواهد رصدی مبنی بر انبساط کیهان، معادلات فریدمان در توصیف کیهان را بدست داد. این معادلات ما را به بیگ بنگ رساندند. جایی که احتمالا آغاز فضا-زمان و در نتیجه کیهان زیبای ماست. سرانجام با اضافه کردن نظریهی تورم و همچنین کشف اثرات مادهی تاریک و انرژِی تاریک، به مدل استاندارد کیهانشناسی رسیدیم. مدلی که کیهانی را شرح میدهد که از مهبانگ آغاز کرده، ناگهان تورم یافته و سپس ذرات در آن شکل گرفتهاند. ذرات ماده و ضد ماده و همچنین چیزی به نام مادهی تاریک که البته هنوز هویتش را نمیدانیم. ماده بر ضد ماده غلبه کرده و همین موجب شکلگیری کهکشانهای زیبا، سیارات و ستارهها شده است. ماده معمولی که میشناسیم که تنها ۵ درصد از کل جهان را تشکیل داده است. این ماده شامل کوارکها که تشکیل دهندهی نوترون و پروتوناند، نوترینوها، آنتی نوترینوها و ذرات دیگر است که همه و همه در مدل استاندارد ذرات بنیادی به زیبایی کنار هم نشستهاند.
پس از موفقیتهای مکانیک کوانتومی، مثل هر نظریهی دیگری، معایبش هم آشکار شد و یکی از آن عیبها، ناتوانی مکانیک کوانتومی در حل مسائلی بود که طی آنها ذره خلق میشد. این موارد ما را به سمت نظریهی میدانهای کوانتومی سوق داد، که ریچارد فاینمن آن را پایه ریزی کرد و رسما دید ما به جهان زیر اتمی تکامل زیبایی یافت. در سالهای اخیر با پیشرفتهای چشمگیر تکنولوژی و علوم مهندسی، بالاخره وجود ذرهی هیگز تایید شد. تابش زمینهی کیهانی هر روز مطالعه میشود. سال گذشته پیشبینی صد سالهی آلبرت اینیشتین تحقق یافت و امواج گرانشی آشکار شدند. پس این طور به نظر میرسد که هر روز بیشتر از روز قبل با طبیعتمان به زبان مشترکی میرسیم. هر روز بیش از قبل زیبایی ریاضیاتمان، و نظریاتی که مینویسیم آشکار میشود.
اما هنوز علامت سوالهای بزرگی در پیش است. مادهی تاریک واقعا چیست؟ انرژی تاریک چیست؟ این دو روی هم رفته ۹۵ درصد از جهان ما را تشکیل میدهند و هنوز برایمان ناشناختهاند. نظریات جدیدمان تا چه اندازه کارآمدند؟ تئوری ریسمان، نظریهی ابرتقارن، گرانش تعمیم یافته، کیهان شناسی مدرن و … . هر روز بیش از قبل پیشرفت میکنیم و به کشف حقیقت نزدیک میشویم. اما واضح است که در پی اینچنین تلاشی به قدمت عمر ما بر روی این کرهی خاکی، سوالات زیادی حل نشده باقی ماندهاند و این چالش بزرگی پیش روی زیباترین وجه ریاضیات، یعنی فیزیک نظریست.
مدتی پیش کتابی میخواندم به نام «دربارهی معنی زندگی» از ویل دورانت.
اوبث اشاره می کرد که تلاش ما برای یافتن حقیقت، در واقع تمام اعتماد به نفسمان را از بین برد . چرا که زمانی ما مرکز جهان بودیم و همه چیز معطوف به ما بود. اما دانشمندان نشان دادند که ما گونهای ناتوان در گوشهای از این جهانیم و روزی تنها خورشیدی که میشناسیم نابودمان خواهد کرد و مولکولهای ما تجزیه خواهد شد و آن روز پایان ماست. این جمله و نگاهش اگرچه از دید یک فیلسوف جالب و قابل تامل است، اما من قویا معتقدم حقیقت، بسیار زیباتر از امنیت ساختگی به وسیلهی توهم است. حقیقت هرچه هست، به ذات خود زیباست و این زیبایی دوچندان میشود وقتی به زبان ریاضی بیان میگردد. این جادوی فیزیک است.
همانگونه که زمانی فاینمن گفت:
«شاعران گفتهاند که علم زیبایی ستاره ها را ضایع میکند، چون که آنها را صرفا کرههایی از اتمها و مولکولهای گاز میدانند. اما من هم میتوانم ستارهها را در آسمان شب کویر ببینم و شکوه و زیباییشان را حس کنم. میتوانم این چرخ فلک را با چشم بزرگ تلسکوپ پالومار تماشا کنم و ببینم که ستاره ها دارند از همدیگر، از نقطه ی آغازی که شاید زمانی سرچشمهی همگیشان بوده است دور میشوند. جستوجو برای فهمیدن این چیزها گمان نمیکنم لطمهای به رمز و راز زیبایی این چرخ فلک بزند. راستی شاعران امروزی چرا حرفی از این چیزها نمیزنند؟ چه جور مردمانی هستند این شاعران که اگر ژوپیتر خدایی در هیئت انسان باشد چه شعر ها که برایش نمیسرایند اما اگر در قالب کرهی عظیم چرخانی از متان و آمونیاک باشد سکوت اختیار میکنند؟»
اگر شما هم به دنبال زیباییهای جهان بینظیرمان هستید، به دنیای ریاضیات خوش آمدید.
حدود۳۳۰ سال پیش، نیوتون با انتشار شاهکار خود، اصول ریاضی فلسفه طبیعی، نگاهی جدید نسبت به بررسی طبیعت را معرفی کرد. نگاه نیوتون به علم به کمک نظریه الکترومغناطیس که توسط مکسول جمع بندی و در نهایت توسط آلبرت اینشتین کامل شد، شالوده فیزیککلاسیک را بنا نهاد. انقلاب بعدی علم، توسط مکانیک کوانتومی رخداد. آنچه که مکانیک کوانتومی در قرن ۲۰ میلادی نشانه گرفت، مسئله موضعیت در فیزیک کلاسیک و نگاه احتمالاتی به طبیعت بود. نگاهی که سرانجام منجر به پارادایمی جدید در علم، به عنوان فیزیک مدرن شد. با این وجود، علیرغم پیشرفتهای خارقالعاده در فیزیک و سایر علوم، کماکان در توجیه بسیاری از پدیدهها ناتوان ماندهایم. پدیدههایی که همیشه اطرافمان حاضر بودهاند ولی هیچموقع قادر به توجیه رفتار آنها نبودهایم. بنابراین، میتوان به این فکر کرد که شاید در نگاه ما به طبیعت و مسائل علمی، نقصی وجود داشته باشد. به دیگر سخن، بعید نیست که مجددا نیاز به بازنگری در نگاهمان به طبیعت (تغییر پارادایم) داشته باشیم؛ عدهی زیادی معتقدند آنچه که در قرن ۲۱ام نیاز است، نگاهی جدید به مبانی علم است؛ نگاه پیچیدگی!
گاهی گفته میشود که ایده پیچیدگی، بخشی از چهارچوب اتحاد بخشی برای علم و انقلابی در فهم ما از سیستمهایی مانند مغز انسان یا اقتصاد جهانی است که رفتار آنها بهسختی قابل پیشبینی و کنترل است. به همین خاطر، سوالی مطرح میشود؛ آیا چیزی به عنوان «علم پیچیدگی» وجود دارد یا اینکه پیچیدگی متناظر با هر شاخهای از علم، دارای شیوه خاص خود است و مردم در رشتههای مختلف مشغول سر و کله زدن با سیستمهای پیچیده زمینه کاری خود هستند؟! به عبارت دیگر، آیا یک پدیده طبیعی مجرد به اسم پیچیدگی، به عنوان بخشی از یک نظریه خاص علمی در سیستمهای متنوع فیزیکی (شامل موجودات زنده) وجود دارد یا اینکه ممکن است سیستمهای پیچده گوناگونی بدون هیچ وجه مشترک وجود داشته باشند؟! بنابراین، مهمترین سوالی که در زمینه پیچیدگی میتوانیم بپرسیم این است که، به راستی پیچیدگی چیست؟ و در صورت وجود پاسخ مناسب به این پرسش، به دنبال این باشیم که آیا برای تمام علوم یک نوع پیچیدگی وجود دارد یا اینکه پیچیدگی وابسته به حوزه مورد مطالعه است!
در مورد تعریف پیچیدگی، هنوز اتفاق نظری بین متخصصان یک رشته خاص، مانند فیزیک، وجود ندارد، چه برسد به تعاریفی که در رشتههای متنوع مطرح میشود. این تعاریف در ادامه نقد و بررسی میشوند. با این وجود، مشترکات زیادی در بین تعاریف موجود وجود دارد که برای شروع بحث، مرور آنها خالی از لطف نیست:
در مورد تعاریف فوق ابهاماتی وجود دارد؛ در (۱) باید ساختار و تغییرات را به درستی و دقت معنا کنیم. در (۲) باید به دنبال تلفیق سیستمهای پیچده و مفاهیمی چون غیرخطی، آشوبناک و بسذرهای بودن باشیم و به درستی مشخص کنیم که آیا این ویژگیها شرط لازم / کافی برای یک سیستم پیچیده هستند یا نه. (۳) و (۴) مفاهیم محاسباتی و موضوعاتی از علم کامپیوتر را مطرح میکند که به خودیخود مسائل چالشبرانگیزی هستند! (۵) ایده مرکزی غیرخطی بودن را مطرح میکند؛ در ادامه میبینیم با این که تعداد زیادی از سیستمهای پیچیده از ویژگی غیرخطی بودن تبعیت میکنند، با این وجود غیرخطی بودن نه شرط لازم و نه شرط کافی برای پیچیدگی است. در مورد (۶) و (۷) نیز باید تاکید کنیم که بسذرهای بودن و شامل اعضا/عناصر/مولفه/افراد زیادی بودن نیز شرط کافی برای پیچیدگی نیست. در ادامه خواهیم دید، تعریف (۸) که ایدهی پدیدارگی (ظهوریافتگی یا برآمدگی: Emergence) را مطرح میکند میتواند مفهومی بسیار گیجکننده باشد برای اینکه به کمک آن بتوانیم سیستمهای پیچیده را تمیز و تشخیص دهیم. در مورد تعریف (۹) باید بحث زیادی کنیم چرا که افراد زیادی در برابر نقص علیت ناراحت خواهند شد! به همین دلیل است که گاهی درک سیستمهای پیچیده برای مردم دشوار است. بنابراین با توجه به ابهامات تعاریف افراد مختلف در حوزههای گوناگون علم، بهتر از است که مفاهیم وابسته به پیچیدگی را بررسی کنیم.