رفتن به نوشته‌ها

دسته: کیهان شناسی

هم‌آغوشی راه‌شیری و آندرومدا:‌ برخورد دیگری در راه است!

کهکشان راه‌شیری امروزی ما حاصل ادغام کهکشان باستانی راه‌شیری با عمر حدود ١٣ میلیارد سال و یک کهکشان کوچک‌تر به نام گایا-انسلادوس است که حدود ١٠ میلیارد سال قبل، با یکدیگر برخورد کردند و باهم کهکشان بزر‌گتر امروزی را تشکیل دادند. البته این تنها برخورد کهکشانی برای راه‌شیری نبوده و برخورد دیگری در راه است؛ این بار با کهکشان آندرومدا، نزدیک‌ترین کهکشان همسایۀ بزرگ به ما.

با بزرگ‌تر شدن تلسکوپ‌ها و بالاتر رفتن کیفیت تصاویر در چند دهه اخیر، قاب‌های جذابی از کهکشان‌های در حال ادغام در فواصل مختلف در عالم ثبت شده. اتفاقی که ممکن است برای کهکشان‌های مجاور یکدیگر به‌دلیل برهمکنش‌های گرانشی رخ بدهد. آندرومدا حدود ٢.۵ میلیون سال نوری از راه‌شیری فاصله دارد و با سرعت بسیار زیاد در حدود ٣٠٠ کیلومتر بر ثانیه، در حال نزدیک شدن به ما است (جهت مقایسه، سرعت زمین به دور خورشید حدود ۳۰ کیلومتر بر ثانیه هست). بنابراین تخمین زده می‌شود که تا حدود ۵ میلیارد سال دیگر، این دو کهکشان باهم برخورد خواهند کرد و یک هم‌آغوشی کهکشانی را رقم خواهند زد!

در برخورد کهکشان‌ها، خیلی بعید است که ستار‌ها با یکدیگر مستقیماً برخورد کنند؛ چون فواصل ستاره‌ها در داخل کهکشان‌ها از هم بسیار زیاد و فضای خالی میان‌ستاره‌ای در مقایسه با ابعاد ستاره‌ها، خیلی خیلی بزرگ‌تر است. برای منظومۀ شمسی ما، از این بابت، اتفاقی نخواهد افتاد. اما تا زمان برخورد دو کهکشان، سوخت خورشید تمام و تبدیل به یک غول سرخی می‌شود که شاید زمین را هم در خود بلعیده باشد. البته تا چند میلیون سال آینده، به دلیل افزایش فعالیت‌ها‌ی خورشیدی، عملاً حیات بر روی زمین غیرممکن خواهد بود؛ هرچند داستان انقراض حیات بر روی زمین، نه میلیون‌ها سال بعد، که شاید خیلی زودتر، به دست خودِ بشر، به‌علت زیادی‌خواهی‌هایش رقم بخورد!

ادغام راه‌شیری و گایا-انسلادوس
Credit: Gabriel Pérez Díaz / SMM (IAC)
ویدیو ساختگی از ادغام کهکشان‌ها و تبدیل شدن به یک کهکشان دیسکی

شکل ساختارها و اجرام سماوی

چرا ستاره‌ها و سیارات کروی هستند و کهکشان‌ها معمولاً شکل دیسکی دارند؟

می‌خواهیم بدانیم شکل اجرام نجومی که در آسمان می‌بینیم به چه صورتی هستند؟ بگذارید ببینیم در آسمان بالای سرمان چه ‌چیزهایی می‌بینیم؟ در طول روز عمدتاً خورشید را می‌بینیم! ولی در شب می توانیم ستاره‌ها را هم مشاهده کنیم. در مناطق شهری تعداد خیلی کمی از آن‌ها و در مناطق خیلی تاریک و به‌دور از آلودگی نوری شهرها تا حدود پنج الی شش هزار ستاره! امروزه می‌دانیم که خورشید یک کره بزرگ گازی است که ‌به‌دلیل هم‌جوشی هسته‌ای در مرکز آن شعله‌ور و درخشان است. ستاره‌های آسمان شب هم همگی خورشیدهایی هستند کروی‌شکل؛ در اندازه‌ها و دماهای مختلف. دیگر چه‌چیزهایی می‌توانیم در آسمان شب ببینیم؟ ماه و گاهی، بعضی‌ از سیارات منظومه‌شمسی. ماه و سیارات منظومه‌شمسی هم همگی به‌شکل کروی هستند؛ سنگی، گازی یا یخی. هم‌چنین می‌بینیم که خورشید، ماه و سیارات در محدوده‌ای در آسمان که به ‌آن منطقه‌البروج گفته می‌شود، حرکت ‌می‌کنند و این موضوع یعنی تقریباً همگی در یک صفحه حول خورشید می‌گردند.‌ بنابراین اگر می‌توانستیم از بالا به منظومه‌شمسی نگاه کنیم می‌دیدیم که ساختاری شبیه به یک دیسک دارد. دیگر چه؟ اگر در مناطق تاریک و به‌دور از شهرها باشیم این شانس را خواهیم داشت که نوار مه‌آلود کهکشان راه‌شیری را هم ببینیم. چرا نوار مه‌آلود؟ چون ما در واقع از داخل دیسک کهکشان به مناطق مرکزی آن نگاه می‌کنیم؛ بنابراین آن را به‌صورت یک نوار می‌بینیم و گرد‌ و غباری که در راستای دید ما قرار گرفته باعث می‌شود این نوار به‌شکل مه‌آلود باشد. با کمک تلسکوپ می‌توانیم کهکشان‌های دیگر را هم ببینیم که عمدتاً ساختاری دیسکی‌شکل دارند. گه‌گاه در آسمان شب می‌توانیم دنباله‌دارها و شهاب‌ها را هم ببینیم. دنباله‌دارها را می‌توان از جمله اجرام سرگردان منظومه‌شمسی دانست که معمولاً شکل‌های نامنظم دارند. دنباله‌دارها حاوی مقادیر زیادی یخ (مواد فرار مثل آب، متان، آمونیاک و غیره) هستند و معمولاً در مدارهای کشیده‌ی باز یا بسته به‌دور خورشید می‌گردند. با نزدیک شدن به خورشید یخ‌ آن‌‌ها آب شده و فوران می‌کند و به‌همراه خود بخش‌هایی از این گلوله‌های برفی کثیف را در فضا بر جای باقی می‌گذارند که تشکیل دنباله را می‌دهند. این مواد بر‌جای‌مانده که به‌شکل گرد و غبار و تکه‌سنگ‌های بزرگ و کوچک هستند می‌توانند با عنوان شهواب‌وارها گاهی در مسیر حرکت زمین قرار گرفته، وارد جو شوند و به‌دلیل اصطکاک بالا با مولکول‌های داخل جو بسوزند و ردّی درخشان از خود به‌نمایش بگذارند. همان شهاب‌های جذاب آسمان!

با این توضیحات، اجرام و ساختارهای نجومی می‌توانند اشکال مختلفی داشته باشند، اما چرا این اشکال را دارند؟ چرا تمام ستاره‌ها و سیارات به‌شکل کروی هستند؟ چرا منظومه‌شمسی و هم‌چنین بیشتر کهکشان‌ها ساختاری دیسکی دارند؟ و چرا دنباله‌دارها و اجرام سرگردان در منظومه‌شمسی شکل‌های نامنظم دارند؟

در ویدیوی زیر که قسمت اول از سری لایوهای اینستاگرامی «علامت‌ سؤال» بوده درمورد پاسخ این سؤالات توضیح داده‌ام. 

«علامت سؤال» عنوان سری لایوهای اینستاگرامی‌ای است که در هر قسمت از آن به‌ یک سؤال نجومی پاسخ داده می‌شود. این سؤال می‌تواند ساده اما حاوی نکته‌ای مهم باشد! در علامت سؤال اول درمورد شکل‌ اجرام سماوی و دلیل آن توضیح داده شده است.

ویدیو در اینستاگرام

اشتباه‌های زیاد آینشتین

متن پیش رو ترجمه‌ جستاری از کارلو روولی فیزیک‌دان ایتالیایی است. او عمدتا در زمینه گرانش کوانتومی کار می‌کند و بنیان‌گذار نظریه گرانش کوانتومی حلقه است. اصل این نوشته اخیرا در کتابی با عنوان There Are Places in the World Where Rules Are Less Important Than Kindness منتشر شده است. این جستار پیش از رصد امواج گرانشی نوشته شده است. رصد مستقیم امواج گرانشی در ۱۴ سپتامبر ۲۰۱۵ پنج ماه پس از انتشار این مقاله انجام شد. در سال ۲۰۱۷ این مشاهده منجر به دریافت جایزه نوبل در فیزیک شد.

شکی نیست که آلبرت آینشتین یکی از دانشمندان بزرگ قرن بیستم بود که عمیق‌تر از دیگران رازهای طبیعت را دید. آیا این به معنی این است که ما باید هر کاری را که او انجام داده‌است، درست بدانیم؟ او هرگز اشتباه نمی‌کرد؟ برعکس!
در واقع، تعداد کمی از دانشمندان به اندازه آینشتین اشتباه کرده‌اند و آن‌هایی که به اندازهٔ او نظر خود را تغییر داده‌اند انگشت‌شمارند. در مورد اشتباهات او در زندگی روزمره که موضوعی شخصی است و در نهایت به خودش مربوط است صحبت نمی‌کنم. بلکه در مورد اشتباه‌های کاملا علمی او سخن می‌گویم؛ ایده‌های اشتباه، پیش‌بینی‌های نادرست، معادلات پر از خطا و ادعاهای علمی‌ای که خود او پسشان گرفت و آن‌هایی که نادرست بودنشان ثابت شد.


اجازه دهید برایتان چند نمونه بیاورم. امروزه می‌دانیم که جهان در حال انبساط است. ژرژ لومتر، فیزیک‌دان بلژیکی، با استفاده از نظریه‌های خودِ آینشتین، موفق به درک این موضوع شد و او را از یافته‌های خود آگاه کرد. آینشتین اما آن ایده‌ها را رد کرد و در پاسخ گفت که آن‌ها بی‌معنی‌اند و تنها در دههٔ سی میلادی که انبساط واقعاً مشاهده شد حرف خود را پس گرفت. یکی دیگر از پیامدهای نظریه او وجود سیاه‌چاله‌ها است؛ او چندین متن پراشتباه در این زمینه نوشت و ادعا کرد که جهان در لبه سیاه‌چاله پایان می‌یابد. وجود امواج گرانشی که اکنون برای آن شواهد غیرمستقیم داریم نیز در نتیجهٔ نظریه‌های آینشتین است. آینشتین ابتدا نوشت که این امواج وجود دارند، اما درست پیش از آن‌که به دنبال تفسیر اشتباه نظریه خودش ادعا کند که آن‌ها وجود ندارند. سپس دوباره نظر خود را تغییر داد تا نتیجه مخالف و درست را بپذیرد.


وقتی آینشتین نظریه نسبیت خاص‌اش را نوشت، از ایده فضازمان استفاده نکرد. این ایده که گویی به مفهوم یک پیوستار (فضای پیوسته) چهاربعدی شامل فضا و زمان اشاره می‌کند، در واقع کار هرمان مینکوفسکی بود که از آن برای بازنویسی نظریهٔ آینشتین استفاده کرد. هنگامی که آینشتین از آنچه مینکوفسکی انجام داده بود آگاه شد، ادعا کرد که این کار فقط از نظر ریاضیاتی بغرنج‌کردن بیهودهٔ نظریه‌اش است، البته پس از مدت کوتاهی کاملاً نظر خود را تغییر داد و دقیقاً از مفهوم فضازمان برای نوشتن نظریهٔ نسبیت عام استفاده کرد. در موضوع نقش ریاضی در فیزیک، آینشتین بارها دیدگاهش را تغییر داد و در طول زندگی‌اش طرفدار ایده‌های گوناگونی بود که با هم صریحا در تناقض بودند.
آینشتین پیش از نوشتن معادلاتِ درست کار اصلی‌اش، یعنی نظریهٔ نسبیت عام، مجموعه مقاله‌هایی منتشر کرد که همه غلط بودند و هرکدام معادلهٔ نادرستِ متفاوتی را پیشنهاد می‌دادند. او حتی تا جایی پیش رفت که یک اثر پیچیده و مفصل منتشر کرد تا استدلال کند که این نظریه نمی‌تواند تقارن خاصی داشته باشد، تقارنی که او بعداً به عنوان اساس نظریه‌اش برگزید!


آینشتین در سال‌های پایانی زندگی‌اش، سرسختانه پافشاری می‌کرد که می‌خواهد یک نظریهٔ وحدت‌بخش برای گرانش و الکترومغناطیس بنویسد، بدون توجه به این که الکترومغناطیس جزئی از یک نظریه بزرگ‌تر (نظریهٔ الکتروضعیف) است، کما این‌که پس از مدت کوتاهی نشان داده شد. بنابراین، پروژه او در متحد کردن آن با گرانش بی‌فایده بود.
آینشتین همچنین بارها موضع خود را در مناظره‌های مربوط به مکانیک کوانتومی تغییر داد. او در ابتدا می‌گفت که این نظریه در تضاد با بقیه چیزها است. سپس پذیرفت که این‌طور نیست و خودش را محدود به پافشاری بر این ایده کرد که این نظریه ناکامل است و نمی‌تواند تمام طبیعت را توصیف کند.
در مورد نسبیت عام، اینشتین برای مدت طولانی متقاعد شده بود که معادلات در نبودِ ماده نمی‌توانند جواب داشته باشند و بنابراین، میدان گرانشی به ماده وابسته است. او دست از این باور برنداشت تا زمانی که ویلم دوسیته و دیگران نشان دادند که او اشتباه می‌کند. سرانجام نظریه را این گونه تفسیر کرد که میدان گرانشی یک موجود مجزای واقعی است که به خودی‌ خود وجود دارد.


در اثر خارق‌العادهٔ ۱۹۱۷ او کیهان‌شناسی نوین را بنیان گذاشت. آینشتین به این پی برد که جهان می‌تواند یک ۳-کره باشد. او ثابت کیهان‌شناسی را معرفی کرد که امروز مورد تایید است ولی با این کار همزمان یک خطای فاحش به فیزیک (عدم تغییر عالم در زمان) و یک خطای چشمگیر به ریاضی اضافه کرد؛ او متوجه نشد جوابی که ارائه کرده بود ناپایدار است و نمی‌تواند دنیای واقعی را توصیف کند. در نتیجه، آن مقاله‌ ترکیب عجیبی از ایده‌های بزرگِ جدید و انقلابی و انبوهی از خطاهای جدی است.


آیا این اشتباه‌ها و تغییر رویه‌ها چیزی از تحسین و ستایش ما نسبت به آلبرت آینشتین کم می‌کند؟ به‌ هیچ‌ وجه. اگر تغییری هم در ما باشد، برعکس است. به نظر من در عوض، این چیزها نکته‌ای راجع به ذات هوش به ما می‌آموزند. هوش، طرفداری سرسختانه از نظرات خود نیست بلکه آمادگی لازم برای تغییر و حتی کنار گذاشتن آن نظرات است. برای درک جهان، باید شهامت آن را داشته باشید که ایده‌ها را بدون ترس از شکست آزمایش کنید، پیوسته نظرات خود را بازبینی کنید و آن‌ها را بهبوبد ببخشید.


آینشتینی که بیش از هر کس دیگری مرتکب خطا می‌شود دقیقاً همان آینشتینی است که بیش‌تر از دیگران در فهم طبیعت موفق است و این‌ها مکمل هم و از جنبه‌های ضروری همان هوش عمیق هستند: بی‌پروایی در تفکر، شهامت خطر کردن، ایمان نداشتن به ایده‌های دریافت‌شده، از همه مهم‌تر ایده‌های خود شخص. اینکه شهامت اشتباه کردن داشته باشی، ایده‌های خود را تغییر دهی، و نه یک بار بلکه بارها، تا به مرحله کشف برسی.
آنچه مهم است درست بودن نیست، تلاش برای فهمیدن است.

جهان‌های موازی چه هستند و چه نیستند؟!

جهان‌های موازی چه هستند؟

عبارت «جها‌ن‌های موازی» از جمله عبارات و مفهوم‌های پرتکرار در داستان‌ها، فیلم‌ها و سریال‌های علمی-تخیلی است که امروزه به همین دلیل به گوش بیشتر افراد جامعه آشناست. از سوی دیگر، استفاده از این عبارت (به خصوص در زبان فارسی) همواره با ابهام‌های فراوانی همراه بوده است که کج‌فهمی‌های زیادی را در ذهن مخاطب غیرمتخصص ايجاد کرده است. برای بر طرف نمودن این ابهام‌ها و اصلاح کج‌فهمی‌ها، در گام اول بايد بر تفاوت دو مفهوم مستقل که متاسفانه در زبان فارسی برای اشاره به هر دو آن‌ها معمولا از عبارت «جها‌ن‌های موازی» استفاده می‌شود، تاکید کنیم: «جهان‌های موازی» که ترجمه عبارت انگلیسی «Parallel Universes» است در زبان انگلیسی کاربرد بسیار محدودی در دایره واژگان تخصصی علم فیزیک دارد و بیشترین استفاده از این عبارت مربوط به داستان‌های‌ علمی-تخیلی است؛ در صورت استفاده از این عبارت در مقالات علمی، با توجه به متن، اشاره به یکی از دو مفهوم مستقل «تفسیر دنیاهای چندگانه»، ترجمه عبارت many-worlds interpretation، و یا مفهوم «چند‌جهان»، ترجمه عبارت multiverse، است. هر چند استفاده از این عبارت برای اشاره به یکی از شاخه‌‌های «درخت تاریخچه‌ها» در تفسیر دنیاهای چندگانه مرسوم‌تر است تا استفاده از آن برای اشاره به یکی از حباب‌ها در فرضیه چند‌جهان. در ادامه این متن، با جزئيات بيشتر به هر کدام از این دو مفهوم خواهیم پرداخت.

تصور روی جلد کتاب داستانی مصور «Flash of Two Worlds» که برای اولین بار مفهوم «جهان‌های موازی» را وارد دنیای مجموعه داستان‌های مصور «Flash» کرد.

در صورت استفاده از عبارت «جهانهای موازی» در مقالات علمی، با توجه به متن، اشاره به یکی از دو مفهوم مستقل «تفسیر دنیاهای چندگانه» و یا فرضیه «چندجهان» است.

تفسیر دنیا‌های چندگانه

تفسیر دنیا‌های چندگانه یا many-worlds interpretation یکی از تفسیر‌های مکانیک کوانتومی‌ است که در سال ۱۹۵۷ و توسط هیوْ اِوِرِت برای حل «مشکل اندازه‌گیری» در مکانیک کوانتومی پیشنهاد داده شد؛ هرچند نام «تفسیر دنیاهای چندگانه» توسط برایس دویت، که در دهه‌های ۶۰ و ۷۰ میلادی نقش اصلی را در ترویج این ایده به عده داشت، برای این تفسیر انتخاب شد. اما شاید این سوال برای‌تان ایجاد شده باشد که «چرا مکانیک کوانتومی به یک تفسیر نیاز دارد؟» و اینکه تفاوت «تفسیر» با «نظریه» و یا «فرضیه» در چیست؟ برای پاسخ به سوال اول باید «اصل اندازه‌گیری» و «تقليل تابع موج» را در مکانیک کوانتومی با دقت بیشتری مورد بررسی قرار دهیم: بر اساس نظریه کوانتومی، تمامی اطلاعات یک سیستم در «حالت کوانتومی» آن سیستم ذخیره شده است که به دلایل تاریخی به آن «تابع موج» نیز گفته می‌شود. همچنین، تحول زمانی حالت کوانتومی یک سیستم توسط معادله شرودینگر توصیف می‌شود که یک معادله دیفرانسیل خطی است. احتمالا این توصیف که مکانیک کوانتومی نظریه‌ای ذاتا آماری است برای خواننده این متن آشنا باشد اما، آنچه که معمولا در توصیف‌های متفاوت از مکانیک کوانتومی کم‌تر بر آن تاکید می‌شود این نکته است که تحول زمانی تابع موج یک سیستم کوانتومی فرآیندی تعینی است (به این معنی که با دانستن حالت اولیه سیستم، معادله شرودینگر حالت کوانتومی سیستم را در تمامی زمان‌های آینده به طور دقیق معین می‌کند— این نتیجه مستقیم خطی بودن معادله شرودینگر است) و ذات آماری نظریه کوانتومی تنها در نتیجه انجام فرآیند اندازه‌گیری است.

بر اثر اندازه‌گیری یک مشاهده‌پذیر، مکانیک کوانتومی تنها احتمالات مشاهده شدن هر کدام از نتایج محتمل را پیش‌بینی کرده و مطابق «اصل اندازه‌گیری» حالت کوانتومی سیستم پس از اندازه‌گیری را به صورت آنی با یکی از این نتایج محتمل جایگزین می‌کند (در صورتی که حالت کوانتومی سیستم پیش از اندازه‌گیری می‌توانسته برهم‌نهی از تمامی این نتایج محتمل باشد)؛ به این جایگزینی حالت کوانتومی پیش از اندازه‌گیری با یکی از حالات محتمل به صورت آنی، «تقلیل تابع موج» یا «جهش کوانتومی» گفته می‌شود. به عبارت دیگر، برخلاف تحول زمانی حالت کوانتومی با استفاده از معادله شرودینگر که فرآیندی یکانی است (به این معنی که مجموع احتمالات در طی این تحول دست نخورده باقی می‌ماند) پدیده اندازه گیری و تقلیل تابع موج فرآیندی غیر یکانی است! درست به دلیل همین تفاوت ذاتی تحول زمانی با پدیده اندازه‌گیری در مکانیک کوانتومی، این سوال ایجاد می‌شود که چه فرآیندهایی را باید یکانی و چه فرآیندهایی را باید به صورت غیر یکانی در نظر گرفت؟ اما، همان‌طور که از توصیف ما از اصل اندازه‌گیری مشخص است، از پدیده اندازه‌گیری تعریف دقیقی ارائه نشده است و به همین دلیل مکانیک کوانتومی نیازمند «تفسیر»ای از آنچه به آن «اندازه‌گیری» گفته می‌شود است.

در تفسیر اولیه‌ای که از این اصل توسط نیلز بور ارائه شد، و امروزه به تفسیر کپنهاگی مشهور است، فیزیک در مقیاس‌های روزمره توسط مکانیک کلاسیکی توصیف می‌شود و مکانیک کوانتومی تنها مقیاس‌های کوچک را توصیف می‌کند. همچنین، در این تفسیر پدیده اندازه‌گیری توسط یک «دستگاه اندازه‌گیری» بزرگ مقیاس توصیف می‌شود که از قوانین مکانیک کلاسیکی تبعیت می‌کند. اما، این تفسیر با فلسفه تقلیل‌گرایانه نظریه‌های علمی در تناقض است و به صورت خاص این سوال را ایجاد می‌کند که فیزیک در کدام مقیاس‌ها توسط مکانیک کوانتومی توصیف می‌شود و در کدام مقیاس‌ها توسط مکانیک کلاسیکی؟ همچنین مشخص نیست که گذار از دنیای کوانتومی به کلاسیکی چگونه رخ می‌دهد و مقیاسی که در آن این گذار صورت می‌گیرد از نظر فیزیکی چه ویژگی خاصی دارد؟ اِروین شرودینگر، که معادله معروف شرودینگر را برای توصیف تحول زمانی یک سیستم کوانتومی پیشنهاد کرده بود، از جمله معروف‌ترین منتقدين این تفسیر از مکانیک کوانتومی بود. شرودینگر در نامه‌ای به بور (که در کتاب جز و کل نوشته‌ی ورنر هایزنبرگ نقل شده‌ است) نوشته است:

طراحی مدادی دون کیشوت
اروین شرودینگر

«بور، تو حتما متوجه هستی که کل این ایده‌ جهش‌های کوانتومی قطعا به [نتایج] بی‌معنی منجر می‌شود… اگر ما همچنان مجبور به تحمل کردن این جهش‌های کوانتومی لعنتی باشیم، من از اینکه هرگز نقشی در نظریه کوانتومی داشته‌ام متاسفم.»

-کتاب جز و کل نوشته‌ی ورنر هایزنبرگ

به منظور بر طرف کردن مشکلات ذکر شده، هیو اورت ایده «حالت نسبی» خود را در زمانی که دوره دکتری فیزیک را در دانشگاه پرینستون و زیر نظر جان ویلر، فیزیکدان مشهور آمریکایی، سپری می‌کرد مطرح نمود. این تفسیر بعدها و توسط برایس دویت به نام «تفسیر دنیا‌های چندگانه» مشهور شد و مطابق آن تلاش می‌شود تا فرآیند اندازه‌گیری نیز درست مانند تحول زمانی توسط یک فرآیند یکانی توصیف شود که تمامی احتمالات را حفظ می‌کند: در این تفسیر، تقلیل تابع موج اتفاق نمی‌افتد و بر اثر هر اندازه‌گیری تاریخچه‌های جدیدی (که به آن‌ها جهان‌های موازی هم گفته می‌شود) شکل می‌گیرند که در هر کدام از آن‌ها یکی از نتایج محتمل انداز‌ه‌گیری مشاهده شده است. برای مثال، تحول زمانی و اندازه‌گیری اسپین یک الکترون را در نظر بگیرید: تحول زمانی می‌تواند حالت کوانتومی این الکترون را در برهم‌نهی از اسپین بالا و پایین آماده کند؛ سپس، در صورت اندازه‌گیری این مشاهد‌ه‌پذیر، مطابق تفسیر دنیا‌های چندگانه، تاریخچه‌های جداگانه‌ای به وجود می‌آیند که در یکی از آن‌ها اسپین الکترون بالا مشاهده شده است و در دیگری اسپین پایین اندازه‌گیری شده است.

درخت تاریخچه‌ها: با هر بار اندازه‌گیری اسپین الکترون، تاریخچه‌های جدیدی به وجود می‌آیند که در هر کدام از آن‌ها یکی از نتایج محتمل، در این مثال اسپین بالا یا پایین، مشاهده شده است؛ این تاریخچه‌ها (یا جهان‌های موازی) هر کدام در نتیجه اندازه‌گیری‌های بعدی می‌توانند به تاریخچه‌های مجزا تقسیم شوند. همچنین، هیچ برهمکنشی بین این تاریخچه‌ها وجود ندارد و این تفسیر از مکانیک کوانتومی منجر به پیش‌بینی قابل مشاهده نمی‌شود.

همچنین، در شباهت با تفسیر کپنهاگی، احتمال قرار گرفتن در هر کدام از این تاریخچه‌ها با قاعده‌ بورن پیش‌بینی می‌شود. شایان ذکر است که در این تصویر تاریخچه‌ها (یا جهان‌های موازی) هیچ برهمکنشی با هم نداشته و پس از شکل‌گیری هر کدام به صورت یکانی و توسط معادله شرودینگر تحول پیدا می‌کنند. در این صورت، پس از گذشت زمانی از اندازه‌گیری اول، اسپین الکترون می‌تواند دوباره در برهم‌نهی از اسپین‌های بالا و پایین قرار گیرد و با تکرار فرآیند اندازه‌گیری اسپین این الکترون می‌توان هر کدام از تاریخچه‌های قبلی را به تاریخچه‌های جدیدی تقسیم نمود: تاریخچه‌هایی که در آن نتیجه اندازه‌گیری اول و دوم به ترتیب {بالا، بالا}؛ {بالا، پایین}؛ {پایین، بالا}؛ {پایین، پایین} بوده است. به این ترتیب، مطابق شکل بالا، درختی از تاریخچه‌ها شکل می‌گیرد که هر کدام از شاخه‌های آن یک واقعیت مجزا (یک تاریخچه یا دنیا موازی) را توصیف می‌کند.

حال که با تفسیر دنیا‌های چندگانه آشنا شدیم، می‌توانیم به سوال دوم که در ابتدا این بخش مطرح شد پاسخ دهیم: آنچه که یک «تفسیر» را از یک «فرضیه» و یا «نظریه» مجزا می‌کند، وجود داشتن و یا نداشتن پیش‌بینی‌های قابل مشاهده است! از آنجا که مطابق تفسیر دنیا‌های چندگانه، دیگر تاریخچه‌ها (یا به عبارتی جهان‌های موازی) هیچ برهم‌کنشی با هم نداشته و هیچ‌ اثر مشاهده پذیری از خود بر دیگر تاریخچه‌ها باقی نمی‌گذارند، هیچ پیش‌بینی قابل مشاهده‌ای که درستی و یا نادرستی این تفسیر را مشخص نماید در دسترس نیست. هرچند، به تازگی فرضیه‌ای مشابه با این تفسیر توسط فرانک ویلچک، برنده نوبل فیزیک، و جردن کاتلر مطرح شده‌ است که به آن «تاریخچه‌های درهمتنیده» گفته می‌شود و قادر به ارائه پیش‌بینی‌های قابل آزمایش است (آزمایش‌های پیشنهاد شده هنوز به انجام نرسیده‌اند و در نتیجه درستی و یا نادرستی این ایده همچنان مشخص نیست). همچنین، باید اشاره نمود که با وجود تفسیر‌های متفاوت از مسئله اندازه‌گیری، این مسئله کماکان جز مسائل باز و حل نشده به حساب می‌آید و تا به امروز توافقی در انتخاب تفسیر‌ درست از مفهوم «اندازه‌گیری» در بین فیزیکدان‌ها وجود ندارد! با این حال، درست به خاطر همین سختی ارائه پیش‌بینی‌های قابل آزمایش برای حل این مسئله، تنها بخش کوچکی از فیزیکدان‌ها به صورت جدی بر روی حل این مشکل کار می‌کنند (هر چند با اهمیت یافتن مضوعاتی از جمله نظریه اطلاعات کوانتومی، آشوب کوانتومی و گرانش/کیهان‌شناسی کوانتومی تعداد افرادی که به صورت غیر مستقیم بر روی حل این مشکل کار می‌کنند افزایش یافته است).

فرضیه چند‌جهان

«فرضیه چند‌جهانی» یا «Multiverse Hypothesis» یکی از نتایج محتمل نظریه «تورم کیهانی»است که به منظور حل کردن مشکلاتی در کیهان‌شناسی (که از آن‌ها با نام‌های مشکل افق و مشکل تختی یاد می‌شود) ارائه شده است. اندازه‌گیری‌های انجام شده و همچنین مشاهدات مبتنی بر تابش زمینه کیهانی نشان می‌دهند که انحنای کیهان امروزی ما بسیار کوچک بوده (هندسه فضا-زمان و نه صرفا هندسه برش‌های فضایی، بسیار به هندسه تخت نزدیک است) و همچنین حالت آن در زمان واجفتیدگی که در آن فوتون‌های تابش زمینه کیهانی توانسته‌اند از برهم‌کنش مداوم با الکترون‌ها و هسته‌ها گریخته و بدون مانع به حرکت خود ادامه دهند (این زمان حدود ۳۷۸ هزار سال پس از مهبانگ است که در مقیاس کیهان‌شناختی زمان بسیار کوتاهی محسوب می‌شود و به همین دلیل این پرتو‌ها اطلاعات زیادی را از کیهان اولیه در اختیار ما قرار می‌دهند) بسیار همگن و یکنواخت بوده است. پیش از مطرح شدن نظریه تورم کیهانی، به نظر می‌رسید که هر دو این مشاهدات نیازمند یک «تنظیم ظریف» در پارامترها هستند زیرا تغییرات جزئی در چگالی ماده و انرژی کیهان اولیه می‌توانست انحنای کیهان امروزی را به شدت تغییر داده و آن را از تخت بودن دور کنند؛ همچنین، همگنی و یکنواختی مشاهده شده در تابش زمینه کیهانی به ما نشان می‌دهد که نواحی از فضا-زمان که با یکدیگر در ارتباط علّی نبوده‌اند به تعادل گرمایی رسیده‌اند.

«نظریه تورم کیهانی» که مطابق آن کیهان اولیه در نخستین کسرهای ثانیه پس از مهبانگ وارد یک دوره کوتاه انبساط بسیاربسیار سریع به نام تورم کیهانی شد می‌تواند سازوکاری را برای توجیح هر دو این مشکل‌ها بدون نیاز به تنظیم ظریف پارامتر‌ها ارائه دهد: این دوره کوتاه انبساط بسیار سریع می‌تواند چگالی ماده و انرژی در عالم اولیه را به مقدار بحرانی آن (که برای تخت بودن کیهان به آن نیاز است) نزدیک کرده و همچنین توجیح نماید که نواحی که در زمان واجفتیدگی در ارتباط علّی با یکدیگر نبوده‌اند، پیش از آغاز تورم با یکدیگر ارتباط علّی داشته و به همین دلیل به تعادل دمایی رسیده‌اند. در شکل امروزی آن این نظریه توسط یک میدان کوانتومی اسکالری (موجودی ریاضی که مطابق قوانین مکانیک کوانتومی تحول یافته و به هر نقطه از فضا-زمان یک عدد نسبت می‌دهد که این عدد با تغییر دستگاه مختصات، از جمله چرخاندن محور‌ها و جا‌به‌جا کردن مبدا، ثابت است. می‌توانید به تابعی که در هر لحظه به نقاط مختلف یک اتاق دمای آن را نسبت می‌دهد، به چشم یک میدان کلاسیکی اسکالری نگاه کنید) با نام «میدان تورم» یا «Inflaton» توصیف می‌شود که تابع پتانسیل آن دارای ویژگی‌های خاصی است. در نظریه تورمی «غلتش کند» یا «Slow-roll Inflation»، تابع پتانسیل میدان تورم دارای ناحیه‌ای نسبتا تخت بوده که فاز تورمی را توصیف می‌کند و میدان تورم پس از اتمام این فاز، با قرار گرفتن و نوسان در اطراف کمینه پتانسیل (که می‌تواند کمینه موضعی یا کمینه سرتاسری باشد) وارد فاز بازگرمایش می‌شود.

شکل تقریبی پتانسیل میدان تورم در در نظریه تورمی غلتش کند. تابع پتانسیل میدان تورم دارای ناحیه‌ای نسبتا تخت بوده که فاز تورمی را توصیف می‌کند و میدان تورم پس از اتمام این فاز، با قرار گرفتن و نوسان در اطراف کمینه پتانسیل وارد فاز بازگرمایش می‌شود. پتانسیل ميدان تورم می‌تواند کمینه‌های موضعی زیادی داشته باشد که در این صورت به این کمینه‌ها خلا کاذب یا خلا شبه‌پایدار گفته می‌شود و میدان کوانتومی تورم می‌تواند با استفاده از تونل‌زنی کوانتومی از این کمینه‌ها خارج شده و باقی کمینه‌ها را در فضای پیکربندی کاوش کند.

در صورتی که این کمینه پتانسیل تنها یک کمینه موضعی باشد (شکل رو به رو)، میدان تورم می‌تواند طی فرآیند تونل‌زنی کوانتومی، که در ادامه در مورد آن بیشتر توضیح خواهیم داد، از سد پتانسیل (بیشینه موضعی پتانسیل که دو کمینه را از هم جدا کرده است) عبور کرده و پس از طی دوباره فاز‌ تورم غلتش کند به نوسان در اطراف کمینه سرتاسری (و یا در حالت کلی‌تر کمینه موضعی دیگر) بپردازد. از آنجا که در نظریه میدان‌های کوانتومی از کمینه‌های پتانسیل به عنوان حالت خلا یاد می‌شود، به این کمینه‌های موضعی حالت خلا کاذب یا خلا شبه‌پایدار و به کمینه‌های سرتاسری خلا حقیقی یا خلا پایدار نیز گفته می‌شود.

شکل تقریبی پتانسیل مناسب برای توصیف تورم ابدی ناشی از واپاشی خلا کاذب. در این تصویر میدان تورم با استفاده از تونل‌زنی کوانتومی به خارج از ناحیه خلا کاذب راه یافته و پس از طی کردن فاز تورمی غلتش کند، وارد فاز باز‌گرمایش و نوسان در اطراف خلا حقیقی می‌‌شود.

در طی این فرآیند تونل‌زنی از خلا کاذب به خلا حقیقی (یا در حالت کلی‌تر از خلا کاذب ۱ به خلا کاذب ۲)، حباب‌هایی از خلا جدید (برای مثال خلا حقیقی) در پس‌زمینه خلا قدیمی (مثلا خلا کاذب در شکل بالا) شکل می‌گیرد که پس از تشکیل شدن با سرعتی نزدیک به سرعت نور گسترش پیدا می‌کنند. درون هر کدام از این حباب‌ها از خلا‌های مختلف، پس از طی شدن مرحله تورم، مرحله بازگرمایش و تشکیل ساختار‌های کیهانی رخ می‌دهد و در نتيجه در درون هر کدام از این حباب‌ها، جهان جدیدی (با ثابت‌های فیزیکی متفاوت) تشکیل می‌شود. در صورتی که نرخ تولید این حباب‌ها از مقدار بحرانی آن کمتر باشد، تورم هرگز متوقف نخواهد شد و در این صورت آنچه به آن «تورم ابدی» گفته می‌شود رخ خواهد داد: حباب‌هایی از جهان‌های متفاوت (که در موارد بسیار معدودی به آن‌ها جهان‌های موازی گفته می‌شود) در پس‌زمینه خلا کاذب اولیه تشکیل خواهد شد که هرگز موفق به پوشاندن کل فضای پر شده از خلا اولیه نخواهند شد و به مجموع آن‌ها «چندجهان» یا Multiverse گفته می‌شود. این پدیده تشکیل حباب، نوعی از یک گذار فاز مرتبه اول است که نمونه کلاسیکی آن را می‌توان با آزمایشی جالب حتی در منزل نیز مشاهده نمود! به همین منظور، پیش از پرداختن به تونل‌زنی کوانتومی و توضیح بیشتر فرآیند تشکیل و گسترش حباب‌ها، کمی درباره پدیده‌های ابرسرمایش یا ابرگرمایش و ارتباط آن‌ها با تشکیل حباب‌ها در کیهان‌شناسی توضیح خواهیم داد.

تجسم هنری از تورم ابدی و چندجهان. براساس این فرضیه، حباب‌هایی از خلا حقیقی در خلا کاذب اولیه به‌وجود می‌آیند که تا ابد بدون پر کردن فضای اولیه به رشد خود ادامه می‌دهند. مجموعه حباب‌های تشکیل‌شده (که در هر کدام از آن‌ها جهان جدیدی به وجود آمده است) در درون خلا کاذب اولیه، چند جهان را تشکیل می‌دهند.

برای توصيف پدیده‌های ابرسرمایش و یا ابرگرمایش، ظرفی از آب مقطر در فاز مایع را در نظر بگیرید. همان‌طور که مطمئنا خواننده این متن با آن آشناست، این ظرف آب در فشار ۱ جو در دمای صفر درجه سانتی‌گراد یخ بسته و در دمای صد درجه سانتی‌گراد بخار می‌شود. با این حال، در صورتی که آب درون ظرف خالص باشد و در طی مدت سرمایش و یا گرم کردن ضربه و یا تکان ناگهانی به ظرف آب وارد نشود، آب مقطر می‌تواند در دمای زیر صفر درجه و یا بالای صد درجه سانتی‌گراد در فاز مایع باقی بماند! در این حالت، با وارد کردن ضربه‌ای به ظرف آب می‌توان تشکیل شدن حباب‌هایی از فاز جامد (یخ) و یا گاز (بخار) را در درون ظرف مشاهده نمود که به سرعت رشد کرده و در زمان کوتاهی کل مایع درون ظرف را به فاز جدید (بخار یا یخ) می‌برند (شکل و ویدیو زیر را ببینید)!

مراحل مختلف پدیده ابرسرمایش از لحظه وارد شدن ضربه و شکل گرفتن حباب‌هایی از یخ تا گسترش و برخورد این حباب‌ها و گذار فاز کامل مایع درون ظرف به فاز جامد را نشان می‌دهد.
پدیده ابرسرمایش که در آن تشکیل شدن حباب‌هایی از یخ و گسترش آن‌ها در درون ظرف به وضوح مشخص است.

همان‌طور که از توضیح ما در بند قبلی مشخص است، این پدیده بسیار شبیه گذار فاز کوانتومی است که چند‌جهان را تشکیل می‌دهد! در واقع پتانسیل موثر بین ملکول‌ها در رژیم ابرسرمایش/ابرگرمایش درست شبیه فرم کلی پتانسیل میدان تورم در رژیم تورم ابدی‌ است (تصویر بالا سمت چپ در صفحه قبل): در این حالت، کمینه موضعی پتانسیل توصیف کننده فاز مایع و کمینه سرتاسری آن توصیف کننده فاز جامد/گاز است. از آنجا که این دو فاز متفاوت توسط یک سد پتانسیل (بیشینه موضعی) از هم جدا شده‌اند، در شرایطی ذکر شده (خالص بودن مایع و عدم وارد شدن ضربه به ظرف) ملکول‌های آب انرژی کافی را برای گذر کردن از این سد پتانسیل نداشته و در نتيجه در کمینه موضعی انرژی (فاز مایع) باقی می‌مانند. در صورت وارد شدن ضربه‌ای کوچک به این سیستم، بخشی از مایع انرژی لازم برای بالا رفتن از قله پتانسیل و قرار گرفتن در کمینه سرتاسری را پیدا می‌کند؛ در این فرآیند، به اندازه تفاوت انرژی بین دو کمینه مختلف انرژی آزاد خواهد شد که می‌تواند باقی بخش‌های مایع را نیز از سد پتانسیل عبور داده و به فاز جدید ببرد. نتیجه این فرآیند، تشکیل و گسترش حباب‌هایی از فاز جدید (جامد و یا گاز) در درون فاز قدیمی (مایع) است.

همان‌طور که پیش از این نیز اشاره کردیم، فرآیند تشکیل حباب‌ها در کیهان‌شناسی را نیز می‌توان با سازوکاری تقریبا مشابه فهمید. برای این منظور ابتدا توضیح کوتاهی در مورد پدیده تونل‌زنی کوانتومی ارائه خواهیم داد: پدیده تونل‌زنی کوانتومی (که پدیده‌ای ذاتا کوانتومی و بدون معادل کلاسیکی است) نتیجه مستقیم ذات دوگانه (موجی-ذره‌ای) سیستم‌های کوانتومی است. ما در مکانیک کلاسیکی با این موضوع آشنا هستیم که بر خلاف ذرات (مثلا یک توپ را در نظر بگیرید)، موج‌ها (مانند امواج الکترومغناطیسی) می‌توانند به میزانی که به طول موج آن‌ها و همچنین پهنا و ارتفاع قله پتانسیل وابسته است، از سد‌های پتانسیل، مانند یک دیوار، عبور کنند (درست به همین دلیل است که توپ و نور مرئی، حداقل به میزانی که برای ما قابل اندازه‌گیری باشد، از دیوار عبور نمی‌کنند اما رادیو و تلویزیون شما در درون خانه همچنان کار می‌کنند!). از آنجا که ذرات کوانتومی در واقع بسته‌های موجی هستند که طول موج آن‌ها با رابطه دوبروی داده می‌شود، انتظار می‌رود که با گذر زمانی به قدر کافی، سیستم‌های کوانتومی نیز بتوانند بدون نیاز به انرژی اضافه (مانند ضربه زدن که برای عبور دادن مایع از سد پتانسیل در مثال ابرسرمایش و ابرگرمایش به آن نیاز بود) از سد‌های پتانسیل عبور کرده و در طرف دیگر آن ظاهر شوند؛ به این پدیده «تونل‌زنی کوانتومی» گفته می‌شود (شکل زیر را ببینید). پدیده تونل‌زنی کوانتومی علاوه بر مکانیک کوانتومی غیر نسبیتی در نظریه میدان‌هایی کوانتومی (در پس‌زمینه‌های تخت و یا منحنى) نیز اتفاق می‌افتد و در آن یک میدان کوانتومی می‌تواند بدون داشتن انرژی کافی برای عبور کلاسیکی از سد پتانسیل، به طرف دیگر آن تونل بزند!

تونل‌زنی کوانتومی از ناحيه خلا کاذب (FV) به ناحيه خلا حقیقی (TV) را نشان می‌دهد.

حال آماده‌ایم تا چگونگی تشکیل چند‌جهان و رشد حباب‌ها در فرضیه تورم ابدی را بهتر درک کنیم: در قسمتی از فضای پر شده از خلا کاذب اولیه (مانند فاز مایع در مثال کلاسیکی ابرسرمایش/ابرگرمایش)، حبابی از خلا جدید بر اثر پدیده تونل‌زنی کوانتومی شکل می‌گیرد (درست مانند حباب‌های یخ/گاز که در مثال ابرسرمایش/ابرگرمایش بر اثر تزریق انرژی به سیستم از طریق وارد کردن ضربه ایجاد می‌شدند)؛ این حباب‌ها پس از شکل‌گیری به سرعت در پس‌زمینه خلا کاذب اولیه رشد می‌کنند. بر خلاف آنچه در مثال ابرسرمایش/ابرگرمایش برای آب در یک ظرف با ابعاد ثابت دیدیم، کیهان پر شده از خلا کاذب اولیه خود در حال انبساط شتاب‌دار است (به دلیل انرژی خلا غیر صفر) و بنابراین، بسته به نرخ تولید این حباب‌ها و سرعت رشد آن‌ها ممكن است این حباب‌های خلا جدید هرگز نتوانند خلا کاذب اولیه را به طور کامل پر کنند. به این رژیم از نظریه تورم کیهانی، «تورم ابدی با واپاشی خلا کاذب» یا (False Vacuum Eternal Inflation) گفته می‌شود. در این حالت، به مجموعه این حباب‌ها چند‌جهان گفته ‌شده و در موارد بسیار محدودی به هر کدام از این حباب‌ها یک جهان‌ موازی نیز گفته می‌شود (هر چند استفاده از این واژه در مقالات علمی انگلیسی زبان برای اشاره به این حباب‌ها بسیار غیر متعارف است).

در آخر بايد بر این نکته تاکید کنیم که هر کدام از حباب‌ها در فرضیه چند‌جهان ناحیه‌هایی از فضا-زمان هستند که بعضی ثابت‌های فیزیکی (مانند ثابت کیهان‌شناسی) در آن‌ها با یکدیگر تفاوت می‌کند. همچنین، تا زمانی که این حباب‌ها با یکدیگر برخورد نکنند، که در رژیم تورم ابدی احتمال آن تقریبا برابر با صفر است، هیچ‌گونه ارتباط علّی بین این حباب‌ها وجود نداشته و سفر کردن بین‌ آن‌ها ممکن نخواهد بود (در صورتی که دو حباب با یکدیگر برخورد کنند، مطمئنا امکانی برای بقای حیات در هیچکدام از آن‌ها باقی نخواهد ماند که بخواهند به جهان دیگر سفر کنند). با این حال بر این نکته تاکید می‌کنیم که اگرچه امکان مشاهده و اندازه‌گیری مستقیم وجود دیگر حباب‌ها امکان‌پذیر نیست، اما این فرضیه اثرات قابل مشاهده غیر مستقیمی را پیش‌بینی می‌کند که ممکن است در آینده امکان تایید (محدود) و یا رد این فرضیه را فراهم کنند! به صورت خاص، رژیم تورم ابدی با واپاشی خلا کاذب تنها با انحنای فضایی (نه فضا-زمانی) منفی سازگار بوده و در صورت مشاهده انحنای فضایی مثبت و یا صفر می‌توانیم درستی این فرضیه را منتفی بدانیم (هر چند مشاهده شدن انحنای فضایی منفی الزاما به معنی تایید این فرضیه نخواهد بود!).

جهان‌هایی موازی چه نیستند؟

حال که در بخش قبلی این متن با تعریف «تفسیر جهان‌های چندگانه» از مکانیک کوانتومی و فرضیه «چندجهان» در کیهان‌شناسی آشنا شدیم، می‌توانیم به برخی باور‌های غلط در ارتباط با این دو مفهوم و استفاده از عبارت «جهان‌های موازی» برای هر دو آن‌ها اشاره کنیم: شاید فراگیرترین باور غلط در ارتباط با هر دو این مفاهيم، امکان برقرار کردن رابطه علّی با «جهان‌های موازی» است! همان‌طور که در انتهای بخش قبل و در مورد فرضیه چند‌جهان به آن اشاره کردیم، با اینکه این جهان‌های موازی (در واقع حباب‌ها) مکان‌های متفاوتی در فضا-زمان هستند، امکان سفر کردن بین این حباب‌ها وجود نداشته و هیچ ارتباط علّی نیز بین آن‌ها برقرار نمی‌باشد. در مورد تفسیر جهان‌های چندگانه این باور غلط حتی مشکل‌زا تر نیز هست زیرا همان‌طور که اشاره کردیم جهان‌های موازی توصیف شده در این تفسیر، تاریخچه‌های متفاوتی از جهان خود ما هستند و مکان‌های متفاوتی را در فضا-زمان توصیف نمی‌کنند! بنابراین، امکان سفر کردن بین آن‌ها نیز منتفی (و بی‌معنی) است.

همچنین، از آنجا که در فیلم‌ها، سریال‌ها و داستان‌های علمی تخیلی برای اشاره به هر دو مفهوم توضیح داده شده از عبارت «جهان‌های موازی» استفاده می‌شود، بسیاری از ویژگی‌های این دو مفهوم متفاوت در ادبيات علمی‌-تخیلی با هم ترکیب شده و ملقمه‌ای را ساخته است که به هیچ کدام از این دو مفهوم علمی شبیه نمی‌باشد! برای مثال، معمولا «جهان‌های موازی» در ادبیات علمی-تخیلی به صورت مکان‌هایی تصور می‌شوند (در شباهت با چندجهان) که تاریخچه آن‌ها بسیار شبیه به دنیا ما بوده و تنها تفاوت‌های کوچکی با آن دارد (احتمالا این نگاه از برداشتی نادقیق از تفسیر جها‌ن‌های چندگانه نشات گرفته است). بنابراین، همان‌طور که در ابتدای این متن نیز به آن اشاره کردیم، تمیز دادن ویژگی‌های متفاوت این دو مفهوم مجزا در بر طرف کردن کج‌فهمی‌های ایجاد شده نقش مهمی را بازی می‌کند.

در نهايت، همان‌گونه که در بخش قبلی به تفصيل شرح داده شد، به ذات متفاوت این دو مفهوم (یکی تفسیر و دیگری فرضیه) اشاره کرده و بر عدم وجود شواهد تجربی (تا به امروز) برای پذیرش یا رد هر دو این مفاهيم تاکید می‌کنیم! هرچند، امکان تایید یا رد فرضیه چند‌جهان (و حتی به صورت کلی‌تر نظریه تورم کیهانی) و یا فرضیه «تاریخچه‌های درهمتنیده»، که ایده‌هایی مشابه با تفسیر جهان‌ها چندگانه را مطرح می‌کند، در آینده وجود داشته و هنوز باید برای مطالعه همخوانی پیش‌بین‌های این دو فرضیه با مشاهدات منتظر ماند!

نوبل فیزیک ۲۰۲۰ برای کاوشگران تاریکی

جایزه نوبل فیزیک امسال به اخترفیزیک‌دان‌ها به خاطر خدماتشان در زمینه بهتر شناختن سیاه‌چاله‌ها رسید. نیمی از جایزه امسال به راجر پنروز و نیم‌دیگر آن به طور مشترک به رینهارد گِنزِل و آندریا ام. گز تعلق گرفت. این جایزه به خاطر کشف این که تشکیل سیاهچاله یک پیش‌بینی بی شائبه از نظریه نسبیت عام است و کشف یک شی فشرده‌ی کلان‌جرم در مرکز کهکشان تعلق گرفت.

سِر راجر پنروز (Sir Roger Penrose) (زاده ۸ اوت ۱۹۳۱)،فیزیک‌دان و ریاضیدان برجستهٔ انگلیسی است.

او به پاس کشف این که تشکیل سیاهچاله یک پیش‌بینی بی شائبه از نظریه نسبیت عام است برنده نیمی از جایزه نوبل فیزیک شد.

آندریا اِم. گِز (Andrea M. Ghez) (زن – زادهٔ ۱۶ ژوئن ۱۹۶۵ در نیویورک) استاد گروه فیزیک و اخترشناسی دانشگاه کالیفرنیا، لس‌آنجلس است. برای آشنایی با کار گز این نوشته را بخوایند.

رینهارد گِنزِل ( Reinhard Genzel) (زادهٔ ۲۴ مارس ۱۹۵۲) عضو انستیتوی فیزیک فرازمینیِ ماکس پلانک و استاد دانشگاه کالیفرنیا، برکلی است.

نیم دیگر جایزه به این دو نفر به خاطر «کشف یک شی فشرده‌ی کلان‌جرم در مرکز کهکشان» تعلق گرفت.

در مورد جایزه امسال بیشتر بخوانید:

سخنرانی اندریا گز در تد ۲۰۰۹ در مورد کشف سیاه‌چاله کلان‌جرم

https://www.ted.com/talks/andrea_ghez_the_hunt_for_a_supermassive_black_hole?language=fa
بر اساس داده‌های جدیدی که از تلسکوپ‌ها به دست آمده‌است، آندریا گز نشان می‌دهد که چگونه اپتیک تطبیقی، اخترشناسان را قادر می‌سازد تا به بررسی مرموزترین اجرام عالم یعنی سیاهچاله‌ها بپردازند. او در این سخنرانی مدارکی را مطرح می‌کند که بر مبنای آن شاید سیاهچاله ای ابر پرجرم در مرکز کهکشان راه شیری کمین کرده باشد.

مصاحبه با رینهارد گنزل در مورد کارهای او پیرامون سیاه‌چاله‌های کلان‌جرم

تصویرسازی‌های موسسه نوبل

fig2-phy-en-cross-section-merged

اتحاد شوالیه‌های تاریکی

چهارشنبه ۱۲ شهریور، اعلام شد که رصدخانه امواج گرانشی لایگو در امریکا و ویرگو در ایتالیا، امواج گرانشی حاصل از ادغام دو سیاه‌چاله‌ را آشکارسازی کرده‌اند که عظیم‌ترین امواج گرانشی ثبت‌شده تا به امروز بوده‌اند. هرچند ادغام دو سیاه‌چاله چیز جدیدی نبوده و قبلاً هم چند مورد از آن آشکارسازی شده بود؛ اما این یکی، ویژگی‌های غیرمعمولی داشته که باعث شده این خبر اهمیتی دوچندان برای اخترفیزیک‌دان‌ها و پژوهشگران فعال در حوزه سیاه‌چاله‌ها داشته باشد.

Image credit: Mark Myers, ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav)

وقتی عالم نیمی از عمر اکنونش را داشت، دو سیاه‌چاله سنگین در هم ادغام شدند و امواج گرانشی تولید کردند. این طنین‌های گرانشی، موجی را پیش بردند و تار‌و‌پود فضا-زمان را شبیه به یک صدای زنگ کیهانی لرزاندند و سیگنالی برای ما به‌جای گذاشتند. ساعت ۷:۳۲:۲۹ صبح روز سه‌شنبه ۳۱ اردیبهشت ۹۸، سه رصدخانه امواج گرانشی (ویرگو و هر‌دو رصدخانه لایگو) بر روی زمین، این سیگنال کوتاه را که فقط یک دهم ثانیه به‌طول انجامید، دریافت کردند. محققان می‌گویند: احتمالاً منشأ این سیگنال ـ که «جی‌دبلیو ۱۹۰۵۲۱» نام‌گذاری شده ـ ادغام دو سیاه‌چاله سنگین‌وزن با جرمی حدود ۶۶ و ۸۵ برابر جرم خورشید بوده که در‌نهایت، یک سیاه‌چاله بزرگتر را با جرمی حدود ۱۴۲ برابر جرم خورشید به‌وجود آورده و مقادیر زیادی انرژی (حدود ۸ برابر جرم خورشید) به‌شکل امواج گرانشی در سراسر جهان آزاد کرد‌ه‌اند. هم‌چنین محققان پروژه لایگو و ویرگو، اسپین (راستای محور و سرعت چرخش) دو سیاه‌چاله اولیه را محاسبه کرده و دریافتند، همان‌طور که این دو سیاه‌چاله به دور یکدیگر دوران داشته و به هم نزدیک می‌شدند، هرکدام حول محور خودشان با زاویه‌ای که هم‌راستا با محور دوران سامانه نبوده می‌چرخیدند؛ احتمالاً همین ناهم‌راستایی محور‌های چرخش، باعث شده وقتی به هم نزدیک‌تر می‌شدند، مدارهایشان حرکت تقدیمی داشته باشد و مثل دو مست میکده تلو‌تلو‌خوران دور یکدیگر بگردند! 🙂

همه سیاه‌چاله‌های مشاهده‌شده تا به امروز، در یکی از این دو دسته قرار می‌گیرند: سیاه‌چاله‌های ستاره‌ای، که تصور می‌شود موقع مرگ ستاره‌های عظیم تشکیل می‌شوند و می‌توانند طیف جرمی از حدود چند برابر جرم خورشید، تا ده‌ها برابر جرم خورشید داشته باشند؛ یا سیاه‌چاله‌های کلان‌جرم که در در قلب کهکشان‌ها هستند و جرمی از مرتبه صدها هزار، تا میلیاردها برابر جرم خورشید دارند (برای آشنایی بیشتر با سیاه‌چاله‌ها، نوشته قیام علیه سیاهی را بخوانید). با این حال، سیاه‌چاله نهایی ایجاد شده در ادغام جی‌دبلیو ۱۹۰۵۲۱، در یک محدوده جرمی متوسط ​​بین این دو دسته قرار گرفته است. در‌واقع، این سیاه‌چاله‌ تشکیل شده با جرمی حدود ۱۴۲ برابر جرم خورشید، به دسته جدیدی از سیاه‌چاله‌ها تعلق دارد که «سیاه‌چاله‌های میانه‌جرم» نام دارند و این مورد، اولین آشکارسازی واضح از این نوع سیاه‌چاله‌ها است.

نمودار ادغام‌های سیاه‌چاله‌هایی که توسط لایگو و ویرگو ثبت شده برحسب جِرمشان در واحد جرم خورشیدی. سیاه‌چاله نهاییِ تازه‌کشف‌شده مربوط به دسته‌ای جدید با نام سیاه‌چاله‌های میانه‌جرم است.
Image credit: : LIGO/Caltech/MIT/R. Hurt (IPAC)

به نظر می‌رسد دو سیاه‌چاله اولیه که سیاه‌چاله نهایی را ایجاد کرده‌اند نیز از نظر جرم بی‌همتایند. طبق مدل‌های اخترفیزیکی فعلی، ستارگانی با جرم ۱۳۰ برابر جرم خورشید می‌توانند سیاه‌چاله‌هایی را به‌وجود بیاورند که جرمشان حداکثر ۶۵ برابر جرم خورشید باشد. اما برای ستاره‌های پرجرم‌تر ، تصور می‌شود پدیده‌ای موسوم به «ناپایداری جفت» رخ دهد؛ وقتی فوتون‌های هسته خیلی پرانرژی می‌شوند، می توانند به یک جفت الکترون و پاد الکترون تبدیل شوند. این جفت‌ها فشار کمتری نسبت به فوتون‌ها ایجاد می‌کنند و باعث می‌شوند ستاره در برابر فروپاشی گرانشی ناپایدار شود؛ این ناپایداری به انفجاری می‌انجامد که به حدی قوی است که هیچ چیزی از خود به‌جای نخواهد گذاشت. حتی ستارگان پر‌جرم‌تر (بیشتر از ۲۰۰ برابر جرم خورشید) سرانجام مستقیماً فرو پاشیده و به سیاه‌چاله‌ای با حداقل ۱۲۰ برابر جرم خورشید تبدیل می‌شوند. بنابراین ، یک ستاره در حال فروپاشی قادر نیست یک سیاه‌چاله با جرمی بین ۶۵ تا ۱۲۰ برابر جرم خورشید را ایجاد کند؛ این محدوده جرمی، با عنوان شکاف جرمِ ناپایداری جفت (Pair Instability Mass Gap) شناخته می‌شود. می‌توان ادعا کرد یک یا هردو سیاه‌چاله اولیه‌ در این محدوده جرمی قرار دارند. یک احتمال برای این مسأله ـ که محققان در مقاله دوم منتشر شده در نظر گرفته‌اند ـ عبارت است از ادغام سلسله‌مراتبی؛ به این معنا که دو سیاه‌چاله اولیه قبل از نزدیک شدن و ادغام نهایی، خود از یک ادغام کوچک‌تر دیگر تشکیل شده باشند.

ادغام سلسله‌مراتبی: تشکیل سیاه‌چاله‌های اولیه از ادغام‌های کوچکتر پیشین
Image credit: LIGO/Caltech/MIT/R. Hurt (IPAC)

آلن واینستین، از اعضای پروژه لایگو و استاد فیزیک در دانشگاه کلتک، می‌گوید:

«این رویداد، بیشتر از اینکه پاسخگوی سوالات باشه، سؤال‌های بیشتری رو مطرح می‌کنه. از نقطه‌نظر کشف کردن [پدیده‌ها] و فیزیک، این چیز خیلی هیجان‌انگیزیه».

جایگاه علم داده در نجوم امروزی

بخش ششم از سری گفت‌وگوهای «پشت‌پرده نجوم»

«پشت‌پرده نجوم» عنوان یک سری از لایوهای اینستاگرامی هست که در آن با چند نفر از دانشجویان و اساتید دانشگاهی، درمورد تصویر درست علم نجوم و فرآیندها و اتفاقاتی که در عمل، در جامعه علمی در جریان است، گفت‌و‌گو شده و هم‌چنین کندوکاوی درمورد مسائل مهمی از قبیل روایتگری در علم و شبه‌علم داشته است.

امروزه با پیشرفت تکنولوژی، نقش داده‌ها در حوزه‌های مختلف علم، از‌جمله علم نجوم، بیش‌از‌پیش نمایان شده است. به‌نظر می‌رسد ابزار برنامه‌نویسی و شبیه‌سازی در آینده‌ای نزدیک، به یکی از مهارت‌های مهم و ضروری برای پژوهش در علم (نجوم) تبدیل شود؛ کما اینکه هم‌اکنون نیز تا حدی همین‌گونه است. در ششمین بخش از «پشت پرده علم» با علیرضا وفایی صدر، پژوهشگر فیزیک در مقطع پسا‌دکتری در IPM، در‌مورد جایگاه علم داده در نجوم امروزی گفت‌و‌گو کرده‌ایم. ویدیو و صوت این گفت‌وگو ضبط شده و در ادامه این متن می‌توانید آن را ببینید و بشنوید.

در علم نجوم امروزی، به‌دلیل ساخت تلسکوپ‌ها و آشکارساز‌های بزرگ متعدد ـ و ترکیب تلسکوپ‌های بزرگ با یکدیگر با استفاده از روش تداخل‌سنجی، برای ساخت تلسکوپ‌های مجازیِ حتی بزرگ‌تر ـ و هم‌چنین افزایش کیفیت و رزولوشن تصاویر دریافتی از آسمان، حجم داده‌ها بسیار افزایش پیدا کرده و کار با داده‌های کلان، به مسئله‌ای مهم تبدیل شده است. به‌عنوان مثال، برای ثبت اولین تصویر از یک سیاه‌چاله که سال پیش توسط تیم تلسکوپ افق رویداد منتشر شد، هشت آرایه‌ از تلسکوپ‌های رادیویی، حدود یک هفته رصد انجام دادند که منجر به دریافت داده‌ای با حجم حدود ۲۷ پتا‌بایت شد و کار انتقال، پاکسازی و تحلیل آن حدود ۲ سال طول کشید (برای اطلاعات بیشتر درمورد جزئیات ثبت این تصویر، این نوشته را بخوانید)! 

در گفت‌وگویمان با علیرضا وفایی‌صدر، به مسائل مختلفی در ‌زمینه نقش داده در نجوم پرداخته‌ایم؛ از جمله اینکه: چطور می‌توان داده‌های کلان را سرو‌سامان داد؟ ماشین‌‌ها (کامپیوترها) چه جنس کارهایی را در زمینه نجوم می‌توانند برای ما انجام دهند؟ همکاری‌های بین‌المللی چه نقشی در این زمینه دارند؟

بخش ششم «پشت‌ پرده نجوم»
ویدیوی گفت‌و‌گوی محمد‌مهدی موسوی (فیزیک‌پیشه) و علیرضا وفایی‌صدر (پژوهشگر فیزیک در مقطع پسادکتری در IPM) درمورد جایگاه علم داده در نجوم امروزی

به این گفت‌وگو گوش دهید: