رفتن به نوشته‌ها

دسته: اخبار

نوبل فیزیک ۲۰۲۰ برای کاوشگران تاریکی

جایزه نوبل فیزیک امسال به اخترفیزیک‌دان‌ها به خاطر خدماتشان در زمینه بهتر شناختن سیاه‌چاله‌ها رسید. نیمی از جایزه امسال به راجر پنروز و نیم‌دیگر آن به طور مشترک به رینهارد گِنزِل و آندریا ام. گز تعلق گرفت. این جایزه به خاطر کشف این که تشکیل سیاهچاله یک پیش‌بینی بی شائبه از نظریه نسبیت عام است و کشف یک شی فشرده‌ی کلان‌جرم در مرکز کهکشان تعلق گرفت.

سِر راجر پنروز (Sir Roger Penrose) (زاده ۸ اوت ۱۹۳۱)،فیزیک‌دان و ریاضیدان برجستهٔ انگلیسی است.

او به پاس کشف این که تشکیل سیاهچاله یک پیش‌بینی بی شائبه از نظریه نسبیت عام است برنده نیمی از جایزه نوبل فیزیک شد.

آندریا اِم. گِز (Andrea M. Ghez) (زن – زادهٔ ۱۶ ژوئن ۱۹۶۵ در نیویورک) استاد گروه فیزیک و اخترشناسی دانشگاه کالیفرنیا، لس‌آنجلس است. برای آشنایی با کار گز این نوشته را بخوایند.

رینهارد گِنزِل ( Reinhard Genzel) (زادهٔ ۲۴ مارس ۱۹۵۲) عضو انستیتوی فیزیک فرازمینیِ ماکس پلانک و استاد دانشگاه کالیفرنیا، برکلی است.

نیم دیگر جایزه به این دو نفر به خاطر «کشف یک شی فشرده‌ی کلان‌جرم در مرکز کهکشان» تعلق گرفت.

در مورد جایزه امسال بیشتر بخوانید:

سخنرانی اندریا گز در تد ۲۰۰۹ در مورد کشف سیاه‌چاله کلان‌جرم

https://www.ted.com/talks/andrea_ghez_the_hunt_for_a_supermassive_black_hole?language=fa
بر اساس داده‌های جدیدی که از تلسکوپ‌ها به دست آمده‌است، آندریا گز نشان می‌دهد که چگونه اپتیک تطبیقی، اخترشناسان را قادر می‌سازد تا به بررسی مرموزترین اجرام عالم یعنی سیاهچاله‌ها بپردازند. او در این سخنرانی مدارکی را مطرح می‌کند که بر مبنای آن شاید سیاهچاله ای ابر پرجرم در مرکز کهکشان راه شیری کمین کرده باشد.

مصاحبه با رینهارد گنزل در مورد کارهای او پیرامون سیاه‌چاله‌های کلان‌جرم

تصویرسازی‌های موسسه نوبل

fig2-phy-en-cross-section-merged

در باب جایزه‌ی نوبل فیزیک ۲۰۱۶: «گذار فازهای تپولوژیک و فازهای تپولوژیک ماده»

 

یه گذار روزمره مثل تغییر فاز آب رو در نظر بگیرید. گاز و مایع به واقع شبیه هم هستن! هر دو از نظر ما بی نظم هستن! حالا یکی یه کم بیشتر یکی یه کم کمتر. اما هیچ کدوم جامد منظم نیستن که همه سرجاشون نشسته باشن. 
مثال دیگه مواد مغناطیسی است. اینا توشون کلی ذره دارن که هر کدوم یک جهتی داره برای خودش- به زبان فنی اسپین. حالا دما خیلی زیاد باشه ماده‌مون که مغناطیسی نیست! یعنی مثلن آهن مذاب در دمای بالا براش سخته منظم باشه، به هم ریخته است. پس اون جهت‌ها همه تصادفی اند و بالطبع متوسط‌شون صفر و ماده مغناطیسی نیست! اما اگر دما پائین بیاد اوضاع عوض میشه، اینا می‌تونن یه جهت خاص رو بگیرن. به این میگن شکست خود به خودی تقارن

بالاتر از دمای بحرانی (نقطه کوری)، ماده دیگر مغناطیسی نیست.
بالاتر از دمای بحرانی (نقطه کوری)، ماده دیگر مغناطیسی نیست.

مردم با همین میخ و چکش سراغ هر تغییر فازی می‌رفتن و سربلند بیرون می‌اومدن. اما یهو آقای فون‌کیلیتزینگ یه چیز جالب دید: اگر یه مشت الکترون رو به دوبُعد محدود کنید، و بَعد میدان مغناطیسی روشن کنی (این همون روشی است که باهاش فهمیدن حامل بار، بارش منفی است) رسانندگی (همون جریان به ولتاژ با یک مشت ضریب) بهت یک سری عدد میده:۱ و۲ و۳ و … بعدتر عددهای کسری عجیب اما خاصی هم پیدا شدن. اما این طور نیست که شما بگی ۱۷.۳۰۸ بعد ما بهت بگیم آهان، میدان فلان رسانندگی اینه که تو می خوای! اعداد طبیعی یا کسری خاص! هرکی به هرکی نیست!

چند خم بسته با Winding Numberهای متفاوت.
چند خم بسته با Winding Numberهای متفاوت.

خب مردم هی دست به دهان بودن که چه طور میشه وسط این همه خطای آزمایش و کثیفی نمونه و غیره این اعداد این قدر خاص باشن؟! چرا این همه چیز پیوسته عوض میشه اما اینا نه؟!!

خب بالطبع اول سعی کردن که همون میخ و چکش رو استفاده کنن. اما این درب بسته بود. اما جناب تاولز و همکاراش نشون دادن که میشه اون اعداد رو محاسبه کرد. اینکه اون اعداد واقعن در اون مساله که بالا گفتم (اثر کوانتومی هال ) از کجا و چطور به دست میاد، رو کاریش نداریم، اما میشه یه مثال ساده زد؛ یک خم بسته‌ی دلخواه روی صفحه بکشید. بعد ببینید این خم چند بار مبدا رو دور زده؟! فرض کنید حالا یه میله ی بزرگ دارید و این خم شما در واقع یک ریسمان است. شما اون عدد (winding number) ریسمان رو مگر با بُریدن ریسمان نمی تونید تغییر بدید.

از سوی دیگه اون عدد همیشه یک عدد طبیعی است: ۰ و ۱ و غیره. حالا در اون دنیا این ریسمان چیز عجیب غریب تری است!

فازهای مختلف ماده - نگاره از nobelprize.org/
فازهای مختلف ماده – نگاره از nobelprize.org

ولی خب کلیت داستان همین است. یعنی یک عددی هست که اتفاقن در برخی موارد همین تعداد دور زدن‌های یک خم بسته حول مبدا است و جز با بُریدن نمیشه تغییرش داد. این بُریدن‌ها در واقع در دنیای جدید به معنای همون گذار فاز هستن، انگار که مایع می‌شد جامد! اینجا هم وقتی ریسمان مربوطه بُریده شد و دوباره بسته شد عدد می‌تونه تغییر کنه! به زبان فنی‌تر در واقع این عدد تا زمانی که سیستم گاف انرژی داشته باشه نمی‌تونه تغییر کنه، و اگر گاف بسته و دوباره باز بشه(مثلن با تغییر یک کمیت مثل میدان مغناطیسی) عدد مورد نظر ما می‌تونه عوض بشه. به خاطر این خواص خیلی سفت و سختش هست که بهش میگن توپولوژیک!پس مساله ی اول حل شد 🙂 تاولز تونست با همکاراش نشون بده که اون اعداد از کجا میان. البته بگم اعداد کسری هنوز حل نشده هستن! خب این حالتهای ماده و این تغییر اعداد، این تغییر نظم(!!!) با یک سری عدد توصیف میشه و توپولوژی!

حالا یک چییز دیگه: همون اسپین‌ها رو در نظر بگیرید. حالا فرض کنید دو بُعد داریم. میشه حالتی رو تصور کرد که همه‌ی اسپین‌هایی که دورمبدا هستن به سمت خارج هستن! عین خطوط میدان یک بار الکتریکی! اصلن همین مثال خوبه! شما می گید ئه!! همه به سمت بیرون هستن پس باید یه چیزی اونجا باشه! حالا اینجا نمی گیم بار، میگیم گردابه! و به جای مقدار بار همون winding number . آقای تاولز و کاسترلیتز نشون دادن که در دو بُعد جز اون حالت بی نظم که همه می دونستن باید اونجا باشه میشه حالاتی داشت که مثلن دو تا گردابه داشته باشه! پس دوباره سرو کله ی این اعداد طبیعی و توپولوژی و فازها پیدا شدن! این بار شما می‌تونید چند تا گردابه‌ داشته باشید، مضاف بر اون هرگردابه یک عددبرای خودش داره که شبیه به همون بار است! این گردابه‌ها و این نوع تغییر فاز در ابرشاره‌ی هلیوم دیده شد!

گذار فاز تپولوژیک
گذار فاز تپولوژیک – نگاره از nobelprize.org

اما جناب هالدین! اون گاز الکترونی و میدان مغناطیسی رو که بالا گفتم در نظر بگیرید! اونا مثلن یه ویژگی خیلی جالب که دارن این است که جریان الکتریکی از روی لبه‌ها حرکت میکنه! و خب رسانندگی ش هم اون اعداد خاص رو میده! 
تا مدت ها مردم فکر می کردن که خب میدان مغناطیسی قوی خیلی مهمه!اما هالدین در یکی از کارهاش یک مدل تئوری ساخت که بدون شار مغناطیسی خالص همون خواص رو داشت! این مدل دو سال پیش در آزمایشگاه realize شد! پس همه فهمیدن چیزای مهمتری تا میدان مغناطیسی هست!  در واقع این بنیان کاری است که در سال ۲۰۰۶،  Kane  و Mele روی گرافین کردن و عایق‌های توپولوژیک رو باز کردن. این‌ها موادی هستند که علی‌رغم اینکه نارسانا هستند، یعین در حجم‌شون گاف هست و رسانش نمی‌تونیم داشته باشیم، روی مرز‌هاشون می‌تونن رسانش داشته باشن! برای همین است که میگن عایق توپولوژیک! عایق trivial میشه همون عایق معمولی، نه تو حجم و نه تو سطح رسانش نداره! اما توپولوژیک‌ها روی سطح رسانش دارن!

اما هالدین کارهایی رو هم روی مدل‌های اسپینی کرده که تاثیر گذاشت روی چیزی که الآن بهش میگن symmetry protected topological phase. هالدین مدل‌هایی رو نگاه کرد که مردم پیش از او هم بررسی کرده بودن! همه فکر می‌کردن این مدل‌های اسپینی Gapless هستن، یعنی با کمی انرژی می‌تونید توش برانگیختگی درست کنید! این در واقع برای اسپین ۱/۲ نشون داده بودن و فکر می کردن برای اسپین‌های بالاتر هم درسته! اما هالدین نشون داد که برای اسپین‌های صحیح مثل ۱ باید دقت کرد و چیزهای دیگه‌ای هم هست که باعث میشن سیستم گاف انرژی داشته باشه! این سیستم‌ها و این خواص هم توپولوژیک هستن و به این راحتی از بین نمی‌رن اما همون‌طور که از اسم‌شون برمیاد یک تقارنی رو لازم دارن، مثلن دوران! یعنی اون خواص توپولوژیک هستند مادامی که شما اون تقارن رو حفظ کنی!

گذار کاسترلیتز تاولز رو تو کتاب کاردر خوب توضیح داده. اینا هم یه سری مقاله در مورد کارهای توپولوژیک و اثر هال:

اینجا هم خوب توضیح داده شده.

این ویدیو رو ببینید:

شنیدن سخنرانی کاسترلیتز در مورد زندگی علمیش خالی از لطف نیست!

Link: universite-paris-saclay-fr

– گفت‌وگو در مورد فیزیک ماده چگال (سخت)

این نوشته از دکتر ابولحسن واعظی که در مجله تکانه منتشر شده است را به علاقمندان به ماده چگال سخت پیشنهاد می‌کنیم:

نشریه‌ی-تکانه-شماره‌ی-۲۹

مقارنه مشتری و زهره

همونطور که میدونید سرعت حرکت ظاهری سیارات و ماه در آسمان از ستاره ها بیشتره و این سرعت برای هر سیاره متفاوته و این موضوع باعث میشه که گاهی اوقات دو سیاره یا یک سیاره و ماه و یا حتی یک سیاره و یک ستاره مشهور ظاهرا از کنار هم عبور کنند که به این اتفاق مقارنه میگویند. همونطور که از ریشه این کلمه عربی معلوم است مقارنه یعنی قرین و همنشین شدن. مقارنه پدیده شایعی در نجوم به حساب میاد اما مقارنه ها درجه زیبایی متفاوتی دارند (از دید من).مثلا همین مقارنه مشتری و زهره جزو قشنگ ترین هاش هست. چون در هنگام غروب خورشید اتفاق می افته و در اون لحظه هنوز ستاره های زیادی در آسمون پیدا نیستند و تنها این دو سیاره پرنور در پس زمینه نارنجی رنگ هنگام غروب و اونم دقیقا در شبی که ماه بدر رو داریم در نزدیکی افق غربی آسمون پدیدار شدند. انگار که هر دو سیاره بر روی یک مدار در حال حرکت هستندحال آنکه مشتری در فاصله 560 میلیون مایلی زمین و زهره در فاصله 46 میلیون مایلی است(اعداد مربوط به 30 ژوئن).مشتری و زهره در 30 ژوئن به نزدیک ترین فاصله از هم رسیدند و در طی چند روز آینده از هم فاصله میگیرند بنابراین امشب هم میتونید از زیبایی این پدیده لذت ببرید. راستی مگه مشتری بزرگتر از زهره نیست؟مشتری حدود 10 برابر بزرگتر زهره هست ولی میبینیم که زهره خیلی پر نور تر از مشتریهدلیلش چیه؟ دلیلش فاصله زیاد سیاره مشتری هست و این باعث میشه که مشتری اصطلاحا دارای قدرظاهری بیشتری(نور کمتر) باشد.

اصلا مگه ممکنه که مشتری که سیاره خارجی (مدار اون خارج از مدار زمین)حساب میشه بیاد از نزدیکی زهره یعنی یه سیاره داخلی عبور کنه؟ همونطور که بالا گفتم ظاهرا این اتفاق به قوع می پیونده. بذارید یکم در مورد مقارنه و اتفاقای شبیه اون بدونیم. دانشمندا میگن که سرعت دریافت اطلاعات برای انسان از راه تصویر چندین برابر شنیدن و یا خواندن هست,بنابراین منم یه تصویر از حالات مختلفی که ممکنه برای دو سیاره از دید زمین اتفاق بیافته رو اینجا قرار میدم تا خودتون اسمای مختلف و جهت گیری سیاره ها برای هر پدیده رو متوجه بشید.

فارسی (عربی) چند اصطلاح موجود در تصویر:

Opposition: مقابله

Conjunction: مقارنه

Quadrature: تربیع

Elongation: (زاویه) کشیدگی

Superior: خارجی

Inferior: داخلی

امیدوارم لذت برده باشید.

نور: یه چیزی بیییییییییینِ موج و ذره :)

سلام،

خُب این اولین پُست من در اینجا است. در واقع اولین پُست اینترنتی من به این شکل. کمی در گوپس (g+) می‌نویسم، اما به طور کلی اهل نوشتن در دنیای مجازی نیستم. این بار هم عباس به من گفت که بنویسم. قرار شد کمی درباره‌ی آزمایشی که کمی پیش‌تر انجام شد بنویسم. در واقع باید خیلی زودتر می‌نوشتم اما نشد.

خُب قضیه چیه؟ در یک خط بخوایم بگیم داستان این است که برای اولین بار به طور هم‌زمان ویژگی ذره‌ای و موجی نور دیده شده!

برگرفته از سایت دانشگاه پلی تکنیک لوزان
برگرفته از سایت دانشگاه پلی تکنیک لوزان

بگذارید برگردیم عقب. در زمان جناب نیوتون و فرما نور، به عنوان یک سری ذره دیده می‌شد، اینکه میگم دیده می‌شد یعنی منظر عمومی و علمی و نه «دیدن با چشم». این طور فکر می‌شد که نور از یک سری ذره تشکیل شده که در جهت مستقیم حرکت می‌کنند و با برخورد با سطحی یا عبور می‌کنند و یا بازتاب می‌شوند. قانون اسنل-دکارت هم به ما می‌گه که اگر ذرات بخواهند بازتاب پیدا کنند، با همون زاویه‌ای که نسب به خط عمود به سطح تابیده شدند، بازتاب می‌شوند و اگر هم عبور کنند بسته به سرعت نور در دو محیط زاویه در محیط دوم تعیین میشه(همون قانونی که توش سینوس و زاویه و اینا داره:) ). اگر اصل جناب فِرما رو هم بپذیرید هر دو قانون به‌دست می‌آیند. اصل این است که نور مسیری رو طی می‌کنه که کمترین زمان رو سپری کنه. یعنی می‌خواد زود به مقصد برسه. با کمی ریاضیات و هندسه هر دو قانون با این اصل اثبات می‌شوند. خُب، همه چیز خوب بود و عدسی‌ها، تلسکوپ‌ها و میکروسکوپ‌ها هم ساخته شدند. بخش 26 نوشته‌های فاینمن را می‌تونید بخونید.

اما این نوع نگاه به نور همه چیز رو توضیح نمی‌داد! برای نمونه پراش رو توضیح نمی‌داد. در آزمایش پراش شما یک روزنه‌ی باریک دارید که نور به علت عبور از این روزنه‌ی کوچک طرحی روشن-تاریک روی صفحه‌ی نمایش درست می‌کنه. اگر یک لیزر داشته باشید(فکر می‌کنم همین لیزرهای کوچک دستی هم کار را راه بیاندازد) و آن را به یک تار مو بتابانید روی دیوار یک طرح روشن و خاموش می‌بینید. اینجا تار جای روزنه است و هوای بیرون جای فضایی که روزنه روی آن تشکیل شده بوده! درست است برعکس است! اینجا نور از همه جا جز تار مو به دیوار می‌رسد، اما در حالتی که روزنه داریم، فقط از روزنه نور می‌رسد. اما نتیجه در کُل یکسان است. بخش 30 نوشته‌های فاینمن را می‌تونید بخونید.

این آزمایش و به نظر کارهای دیگر فیزیک‌دانان رو وادار کرده بود تا تئوری موجی رو آماده کنند. در این بین آزمایش دوشکافی یانگ هم خیلی تاثیر

آزمایش دوشکاف یانگ - برگرفته شده از صفحه ویکی‌پدیای این آزمایش
آزمایش دوشکاف یانگ – برگرفته از صفحه ویکی‌پدیای این آزمایش

گذاشت. در این آزمایش روی یک دیواره‌ی مات دو شکاف ایجاد می‌کنند. از یک منبع، نور به سمت این دو شکاف تابیده می‌شود و پس از عبور از دو شکاف نور به پرده می‌رسد. برای اینکه آزمایش رو بفهمیم اول بیاید حالت تک شکاف رو در نظر بگیریم. فرض هم می‌کنیم پراش نداریم. یعنی لبه‌ی روزنه‌ای که درست کردیم دست به نور نمی‌زنه. انتظار داریم که روبروی روزنه بر روی پرده نور یک بخش روشن داشته باشیم و همین طور آرام آرام با دور شدن از آن، شدت نور کم بشه. حالا اگر دو تا از این روزنه‌ها داشته باشیم چی؟ خُب انتظار می‌ره که دو تا از این روشنی‌ها داشته باشیم. یعنی یکی روبروی روزنه‌ی اول و یکی دیگه روبری روزنه‌ی دوم. بقیه‌ی جاها هم به تناسب فاصله‌شون کمتر  و کمتر روشن باشند. اما در کمال تعجب یک سری موجود روشن و خاموش می‌بینیم! اینکه یک جاهایی کاملن تیره باشند، یعنی اصلن انگار نه انگار که نور تابیده شده عجیبه واقعن!!! بخش 29 از نوشته‌های فاینمن را می‌تونید بخونید.

اینجا است که تئوری موجی نور خیلی خودنمایی می‌کنه. اگر شما در نظر بگیرید که دو جبهه‌ی موج دارید، یکی از روزنه‌ی اول و یکی از دوم، این دو جبهه می‌تونن به صورت هم‌فاز یا ناهم‌فاز به هم برسند، پس می‌تونند بر شدت هم بیافزایند یا کم کنند، می‌تونند برای هم مفید باشند یا مخرب. پس یه جاهایی روشنایی زیاد میشه و یک جاهایی تاریک!

در ادامه‌ی قرن نوزدهم با توسعه‌ی الکترومغناطیس و نوشته شدن معادلات ماکسول، مشخص شد که برای نور میشه یک توصیف موجی پیدا کرد. ماکسول نشون داد که نور در معادله‌ی موجی صدق می‌کنه که در مکانیک و صوت می‌شناختند. پس نور موج است! از طرفی همون معادلات تمامی آنچه در دنیای ذره‌ای هم بود رو توصیف کردند. یعنی قانون بازتاب با زاویه‌ی یکسان با تابش و قانون اسنل-دکارت از دل توصیف موجی و معادلات ماکسول بیرون اومد. پس دیگه همه چیز به نظر خوب می‌رسید، تمامی آزمایش‌ها با توصیف جدید می‌خوند و همه خوشحال. پس نور موج بود.

اما کمی که گذشت ورق برگشت. آزمایشی انجام شد به نام فوتوالکتریک .

نموداری از تابش الکترون‌ها از یک صفحهٔ فلزی. این امر زمانی رخ می‌دهد که انرژی واردشده توسط فوتون داخل‌شونده بیش از تابع کار ماده باشد. - برگرفته شده از ویکی‌پدیا
نموداری از تابش الکترون‌ها از یک صفحهٔ فلزی
برگرفته از ویکی‌پدیا

در این آزمایش نور به یک ورقه‌ی رسانا تابیده می‌شود. اگر شرایطی مهیّا باشد، الکترون‌ها از ورقه کنده می‌شوند. اگر این برگه به پتانسیل صفر بسته شده باشد، و در جایی دیگر پتانسیل مثبت باشد، الکترون‌ها به سمت پتانسیل مثبت می‌روند و به این ترتیب آشکار می‌شوند. بر اساس تئوری الکترومغناطیس اگر شدت نور به اندازه‌ی کافی زیاد باشد، باید الکترون‌ها از ورقه کَنده شوند. طبق این پیش‌بینی فرکانس نور تابیده اهمیت ندارد. در این صورت در هر فرکانسی اگر شدت نور به اندازه‌ی کافی زیاد شود باید بتوان الکترون را کَند. اما در آزمایش خلاف این دیده شد. شدت به هیچ وجه مهم نیست! فرکانس مهم است! فرکانس نور تابیده باید از حدی بیشتر باشد تا الکترون‌ها کَنده شوند و به سمت پتانسیل مثبت حرکت کنند. انیشتین پدیده را با توصیف ذره‌ای از نور توجیه کرد. این یکی از مقالات مهم 1905 انیشتین است. خودش فکر می‌کرد که دیگه هیچ وقت کسی به این آزمایش و مقاله برنمی‌گرده اما خُب هم به خاطرش نوبل گرفت و هم بی‌شک در چارچوب فکری فیزیک‌دانان تاثیر شگرفی گذاشت. اما توجیه چی بود؟ توجیه این است که نور از بسته‌های انرژی تشکیل شده. هر بسته انرژی مشخصی داره که رابطه‌ی خطی با فرکانس داره. به این ترتیب انرژی نور کوانتیده است و ضریب صحیحی از انرژی بسته‌ها است. به این ترتیب این شدت نیست که اهمیت داره، بلکه فرکانس نور است. جالب اینجا است که پس از توسعه‌ی تئوری کوانتوم این بسته‌های نور بهتر شناخته شدند و مشخص شد هر کدام انرژی و تکانه‌ی مشخصی دارند و این بسیاری از پدیده‌های بعدی در دنیای کوچک مقیاس رو توصیف کرد. این بسته‌های کوچک، این ذرات نور رو فوتون می‌نامند. بخش‌های 37 و 38 از فاینمن را ببینید.

خیلِ خُب… تا اینجا دیدیم که هرجایی یک نوع نگاه به نور به ما کمک می‌کنه تا پدیده رو توصیف کنیم. اما آیا می‌تونیم آزمایشی انجام بدیم که هم‌زمان هر دو جنبه رو نشون بده؟

الآن جواب این سوال بلی است. در دانشگاه پلی‌تکنیک لوزان اومدند و یک پرتو نور رو به یک نوار نازک رسانا تاباندند. به این ترتیب یک موج ایستا از نور در داخل این سیم نازک درست کردند. خُب پس موج داریم، اما یادمون باشه که این نور جنبه‌ی ذره‌ای هم داره. اما سوال مهم‌تر اینکه اصلن چه طور نور رو ببینیم؟ ما همیشه با نور همه چیز رو می‌بینیم. چه‌طوری نور رو ببینیم؟ خُب با الکترون. میکروسکوپی وجود داره که با الکترون کار می‌کنه!

حالا چه کردند؟ این دوستان  اومدند و یک سری الکترون رو تابوندند به این سیم نازک. الکترون‌ها بسته به اینکه به کجای موج ایستاده برخورد کنند سرعت‌شون زیاد یا کم میشه. با یک میکروسکوپ خیلی سریع می‌تونند جای این اتفاق رو مشخص کنند. به این ترتیب حالت موجی نور رو می‌بینند.

اما حالت ذره‌ای چه‌طور؟ حالا بیاید فرض کنیم که جای موج اونجا یک سری فوتون هستند. وقتی الکترون به سیم برخورد کنه با این فوتون‌ها برخورد می‌کنه.  اما انرژی و تکانه در این برخوردها کوانتیده است! یعنی ضریبی صحیح از فرکانس موج ایستاده است که توی سیم است. پس به این ترتیب با توجه به این کوانتیده بودن بعد از برخورد هم الکترون هر انرژی‌ای نمی‌تونه داشته باشه. انرژی‌ای که به الکترون از طریق این فوتون‌ها می‌رسه کوانتیده است! یعنی انرژی الکترون‌ها بعد از برخورد رو اگر اندازه‌گیری کنیم، می‌بینیم که تغییراتش ضریبی از همون بسته‌های انرژی فوتون‌ها است. این کاری است که انجام دادند! یعنی انرژی الکترون رو بعد از عبور از سیم اندازه‌گیری کردند و دیدند که اختلافش با مقدار اولیه همون بسته‌ها است. به این ترتیب برای اولین بار تونستند هر دو جنبه‌ی نور رو در یک آزمایش نمایش بدهند.

این ویدئو رو ببینید:

ترجمه بهترین‌ آثار کوتاه‌ فاینمن!

A collection of short works from Richard Feynman

تیم‌ترجمه سیتپور شروع به ترجمه بهترین آثار کوتاه فاینمن نموده است.

کتاب The Pleasure Of Finding Things Out مجموعه‌ای از سخنرانی‌ها، مصاحبه‌ها و مقالات چاپ شده فاینمن است. سعی ما بر ترجمه همه‌ی آثار موجود در این کتاب می‌باشد. در کتاب نام‌برده ۱۳ مطلب موجود است که تاکنون برخی از آن‌ها ترجمه شده‌اند، از جمله: «علم چیست؟» و «فضای زیادی در سطوح پایین وجود دارد!»

درصورت تمایل این کتاب را دانلود کنید و عنوان مطلبی که علاقمند به ترجمه آن هستید را در قسمت نظرات بنویسید و یا به نشانی abbascarimi در gmail ایمیل کنید!

دانلود کتاب The Pleasure Of Finding Things Out

تا کنون مقاله‌های زیر توسط اعضای تیم ترجمه، ترجمه شده‌اند، در صورت تمایل مقاله‌هایی غیر از این‌موارد انتخاب کنید:

The Pleasure of Finding Things Out (1

2) Cargo Cult Science

(این لیست آپدیت می‌شود)

 

ما به یاد کسانی که راه را هموار ساختند هستیم و به آنها خواهیم پیوست!

منتظر شما هستیم

تیم ترجمه سیتپور

تبریک! مریم میرزاخانی اولین برنده‌ی خانم مدال فیلدز ریاضی

معتبرین‌ترین جایزه‌ی علمی دنیا، جایزه‌ی نوبل هست. ولی این جایزه به دلایلی به ریاضیدان‌ها داده نمیشه! در عوض جان چارلز فیلد، ریاضیدان کانادایی ابتکاری زد که هر چهار سال یک بار، به ریاضیدانانی که کمتر از ۴۰سال داشته باشند و یک کار ارزنده و خیلی خوبی توی ریاضیات انجام بدند یک جایزه داده بشه، که این جایزه همون مدال فیلدز هست. مدال فیلدز و جایزه‌ی آبل معتبرترین و مهم‌ترین جایزه‌هایی هستند که یک ریاضیدان ممکنه اون رو ببره و در حقیقت جایگزین جایزه نوبل برای ریاضی هست!

هر دوره این جایزه به دو، سه یا چهار ریاضیدان اهدا میشه. امسال (دیروز اعلام شد) این جایزه به چهار نفر به نام‌های آرتور آویلا، مانجول بارگاوا، مارتین هایرر و مریم میرزاخانی اهدا شد.  با کمال خوشحالی و ذوق بسیار بسیار زیاد، بین این چهار نفر اسم خانم دکتر مریم میرزاخانی هست. که نه تنها موجب خوشحالی و مباهاته بلکه جالب توجه هم هست که ایشون اولین خانم برنده‌ی این جایزه در کل تاریخ هستند! هورا!  

مریم میزراخانی در حال گرفتن مدال فیلدز از دست پارک‌گون‌های رئیس جمهور کره‌جنوبی
مریم میزراخانی در حال گرفتن مدال فیلدز از دست پارک‌گون‌های رئیس جمهور کره‌جنوبی

تبریک میگیم به خانم میرزاخانی و برای ایشون آرزوی سلامتی و موفقیت‌های پی‌درپی داریم! دست مریزاد خانم دکتر 🙂 برنده‌شدن ایشون موجب تشویق بیشتر خانم‌ها به این جایزه شد، مسئولین برگزارکننده خیلی خوشحال بودند و این رو یک دریچه‌ی امید برای دختران و خانم‌های جوان که در ریاضیات فعالیت میکنند دونستند!

مریم میرزاخانی این مدال رو به خاطر کارشون روی «دینامیک و هندسه سطوح ریمانی و فضاهای پیمانه‌ای آنها» که مربوط به هندسه‌ی مختلط میشه برنده شدند.  مسئله‌ی سه جسم (مثل برهمکنش خورشید و زمین و ماه) حل دقیق ریاضی نداره. مریم میزاخانی نشون داد در سیستم‌های دینامیکی که نوع تحولشون به نحوی هست که شکلشون رو می‌چرخونند و کش میارند، مسیرهای سیستم بالاجبار مقیدند که از قوانین جبری پیروی کنند! خلاصه این که مسئله‌‌‌ی سه جسم به یک سرانجام خوبی رسید!

مک‌مولن گفته که دستاورد خانم میرزاخانی «توانایی فوق‌العاده در حل مسئله، دید وسیع در ریاضیات و روان بودن در دیسیپلین‌های زیادی» رو ترکیب کرد که در عصر مدرن واقعا غیرعادیه!

به نقل از ویکی‌پدیا:

مریم میرزاخانی (زاده ۱۹۷۷ریاضیدان ایرانی و استاد دانشگاه استنفورد است. او طی تحصیل در دبیرستان فرزانگان تهران در سال‌های ۱۹۹۴ (هنگ‌کنگ) و ۱۹۹۵ (کانادا) برنده مدال طلا در المپیاد جهانی ریاضی و در این سال حایز نمره کامل شد. سپس کارشناسی ارشد خود را در رشته ریاضی از دانشگاه شریف گرفت و برای ادامه تحصیل دکترا به دانشگاه هاروارد رفت. از مریم میرزاخانی به عنوان یکی از ده ذهنِ جوان برگزیده سال ۲۰۰۵ از سوی نشریه پاپیولار ساینس در آمریکاو ذهن برتر در رشته ریاضیات تجلیل شد. میرزاخانی برنده جوایزی چون جایزه ستر از انجمن ریاضی آمریکا در سال ۲۰۱۳، جایزه کلی و مدال فیلدز در سال ۲۰۱۴ است. وی از یازدهم شهریور ماه ۱۳۸۷ (اول سپتامبر ۲۰۰۸) در دانشگاه استنفورد استاد دانشگاه و پژوهشگر رشته ریاضیات است. پیش از این، او استاد دانشگاه پرینستون بود.

این ویدیو ها رو ببینید: