معتبرینترین جایزهی علمی دنیا، جایزهی نوبل هست. ولی این جایزه به دلایلی به ریاضیدانها داده نمیشه! در عوض جان چارلزفیلد، ریاضیدان کانادایی ابتکاری زد که هر چهار سال یک بار، به ریاضیدانانی که کمتر از ۴۰سال داشته باشند و یک کار ارزنده و خیلی خوبی توی ریاضیات انجام بدند یک جایزه داده بشه، که این جایزه همون مدال فیلدز هست. مدال فیلدز و جایزهی آبل معتبرترین و مهمترین جایزههایی هستند که یک ریاضیدان ممکنه اون رو ببره و در حقیقت جایگزین جایزه نوبل برای ریاضی هست!
هر دوره این جایزه به دو، سه یا چهار ریاضیدان اهدا میشه. امسال (دیروز اعلام شد) این جایزه به چهار نفر به نامهای آرتور آویلا، مانجول بارگاوا، مارتین هایرر و مریم میرزاخانیاهدا شد. با کمال خوشحالی و ذوق بسیار بسیار زیاد، بین این چهار نفر اسم خانم دکتر مریم میرزاخانی هست. که نه تنها موجب خوشحالی و مباهاته بلکه جالب توجه هم هست که ایشون اولین خانم برندهی این جایزه در کل تاریخ هستند! هورا!
تبریک میگیم به خانم میرزاخانی و برای ایشون آرزوی سلامتی و موفقیتهای پیدرپی داریم! دست مریزاد خانم دکتر 🙂 برندهشدن ایشون موجب تشویق بیشتر خانمها به این جایزه شد، مسئولین برگزارکننده خیلی خوشحال بودند و این رو یک دریچهی امید برای دختران و خانمهای جوان که در ریاضیات فعالیت میکنند دونستند!
مریم میرزاخانی این مدال رو به خاطر کارشون روی «دینامیک و هندسه سطوح ریمانی و فضاهای پیمانهای آنها» که مربوط به هندسهی مختلط میشه برنده شدند. مسئلهی سه جسم (مثل برهمکنش خورشید و زمین و ماه) حل دقیق ریاضی نداره. مریم میزاخانی نشون داد در سیستمهای دینامیکی که نوع تحولشون به نحوی هست که شکلشون رو میچرخونند و کش میارند، مسیرهای سیستم بالاجبار مقیدند که از قوانین جبری پیروی کنند! خلاصه این که مسئلهی سه جسم به یک سرانجام خوبی رسید!
مکمولن گفته که دستاورد خانم میرزاخانی «توانایی فوقالعاده در حل مسئله، دید وسیع در ریاضیات و روان بودن در دیسیپلینهای زیادی» رو ترکیب کرد که در عصر مدرن واقعا غیرعادیه!
به نقل از ویکیپدیا:
مریم میرزاخانی (زاده ۱۹۷۷) ریاضیدانایرانی و استاد دانشگاه استنفورد است. او طی تحصیل در دبیرستان فرزانگان تهران در سالهای ۱۹۹۴ (هنگکنگ) و ۱۹۹۵ (کانادا) برنده مدال طلا در المپیاد جهانی ریاضی و در این سال حایز نمره کامل شد. سپس کارشناسی ارشد خود را در رشته ریاضی از دانشگاه شریف گرفت و برای ادامه تحصیل دکترا به دانشگاه هاروارد رفت. از مریم میرزاخانی به عنوان یکی از ده ذهنِ جوان برگزیده سال ۲۰۰۵ از سوی نشریه پاپیولار ساینس در آمریکاو ذهن برتر در رشته ریاضیات تجلیل شد. میرزاخانی برنده جوایزی چون جایزه ستر از انجمن ریاضی آمریکا در سال ۲۰۱۳، جایزه کلی و مدال فیلدز در سال ۲۰۱۴ است. وی از یازدهم شهریور ماه ۱۳۸۷ (اول سپتامبر ۲۰۰۸) در دانشگاه استنفورد استاد دانشگاه و پژوهشگر رشته ریاضیات است. پیش از این، او استاد دانشگاه پرینستون بود.
توی قسمت قبلی دیدیم که اگر هر تابع f رو داشته باشیم میتونیم برای اون تابع مجموعهی ژولیای مربوط به اون رو پیدا کنیم که خب یکمی از کامپیوتر هم کمک گرفتیم. کار ما این بود که یک تابع رو بر میداشتیم شرایط اولیهای (یک سری نقطه توی فضای مختلطی (موهومی)) بهش میدادیم، مقدار تابع رو به ازای اون شرایط اولیه به دست میاوردیم و همین طور دوباره این مقدار رو به تابع میدادیم و این روند رو ادامه میدادیم تا ببینیم آیا شرایط اولیهای که انتخاب کردیم به بینهایت میل میکنه یا نه، اگر نمیکرد اون موقع مجموعهی ژولیا اون تابع رو تشکیل میداد. همین طور گفتیم که از بین همهی توابع، توابعی که به صورت چندجملهای های مربعی میباشند بیشتر مشهور هستند؛ توابعی با فورم: $$f(z)=z^2 +c$$توی این پست در مورد علت این شهرت توضیح میدم؛
تابع ${f(z)=z^2 +c}$ رو در نظر بگیرید؛ فراموش نکنید که c میتونه هر عددی – ولی حتما مختلط – باشه. حالا اگر با نقطهی z=0 شروع کنیم، به این دنباله میرسیم:
$$ c , c² + c , (c²+c)² + c , ((c²+c)²+c)² + c , (((c²+c)²+c)²+c)² + c , …$$
اگر این دنباله واگرا نباشه، یعنی اگر c هایی انتخاب کنیم که در نهایت این دنباله به بینهایت نرسه اون موقع مجموعهی ژولیایی که توسط این cها برای تابع ${f(z)=z^2 +c}$ ساخته میشه، «همبند» هست. احتمالای توی نظریهی گراف با مفهموم همبند بودن آشنا شدین (معمولا سال آخر دبیرستان بچههای رشتهی ریاضی فیزیک نظریهی گراف رو توی درس ریاضیات گسسته میخونند!) اگر نشدین، همبند بودن یک جور مفهموم متصل بودن رو داره، وقتی یک گراف یا شبکهای همبند باشه اونموقع اگر شما از یک نقطهای شروع به حرکت کردید، میتونید به هر نقطهای که دلتون میخواد برید وبدون اینکه جایی مسیرتون قطع بشه. خلاصه این که اگر دنبالهای که ساختیم واگرا
نشد اون موقع ما یک مجموعهی ژولیای همبند میتونیم بسازیم. (اثبات این مطلب فراتر از حوصلهی ماست!) خب حالا این مجموعهی ژولیای همبند به چه دردی میخوره آیا؟! اجازه بدید تا یک مجموعهی جدید معرفی کنیم به نام «مجموعهی مندلبرو».
«مجموعه مندلبرو شامل نقاطی (c) از صفحهی مختلط هست که به ازای آن ها مجموعهی ژولیا تابع ${f(z)=z^2 +c}$ همبند باشد.»
شما میتونید یک برنامه بنویسید تا براتون مقادیری که C ممکنه بگیره رو پیدا کنه ولی یک نکتهای هست و اون اینه که همهی مجموعههای ژولیا همبند شامل نقطهی 0 = 0+ z= 0i هستند! بنابراین «اربیت» یا «چرخش» یا «تکرار» مبدا برای این دسته از مجموعه ها، همیشه باید یک مقدار کراندار باشه و به بینهایت میل نکنه، پس نقطهی صفر در همهی مجموعههای ژولیای همبند صدق میکنه. به طور مشابه در همهی مجموعههای ژولیای ناهمبند نقطهی صفر وجود نداره! خب این یک سنگ محکی شد برای تشخیص اینکه آیا نقطه c دلخواهی عضو مجموعهی مندلبرو هست یا نه! یعنی کافیه تا ما «اربیت» یا «چرخش» یا «تکرار» نقطهی z=0 رو برای تابع ${f(z)=z^2 +c}$ بررسی کنیم، اگر مقادیری که به دست میاند (همون «اربیت» یا «چرخش») کراندار باشند اون موقع اون c مورد نظر ما عضو مجموعه مندلبرو هست ولی اگر به بینهایت میل کنه اونموقع اون c دیگه عضو مجموعه مندلبرو نیست! شرمنده 😀
مجموعهی مندلبرو یکی از موضوعات دینامیک مختلطه که برای اولین بار ایدهش اوایل قرن بیستم توسط ریاضیدانان فرانسوی بهنام «فاتو» و«ژولیا» مطرح شد. اون موقعها هنوز کامپیوتر زیاد رونق نداشت برای همین مثلا فاتو نتونست شهود و تصویر خوبی از این مجموعه ارائه بده. تا اینکه مندلبرو اول مارس ۱۹۸۰(اواخر قرن بیستم!) به لطف کامپیوترهای شرکت IBM تونست این کار رو انجام بده و بعدش هم این موضوع رو گسترش زیادی داد. آدمهای زیادی بعد از مندلبرو روی این موضوع کار کردند ولی به خاطر خدمات مندلبرو یا به احترام مندلبرو، اسم این مجوعه رو «مجموعه مندلبرو» گذاشتند!
این مجموعه در حقیقت یک فرکتال هست با مرز بسیار بسیار پیچیده، جوری که شیشیکورا ثابت کرد (۱۹۹۸) که بعد این مرز ۲ هست! این فرکتال برخلاف مجموعهی ژولیا کاملا خودمتشابه نیست و اگر روی شکل زوم کنید این رو به راحتی متوجه خواهید شد!
همین طور این مجموعه توی صفحهی مختلط، توی دیسکی یه شعاع ۲ قرار میگیره و تقاطع اون با محور حقیقی بازه [۰/۲۵, ۲-] هست. حدودا دو سال پیش مساحت مجموعه مندلبرو 0.0000000028 ± 1.5065918849 واحدمربع تخمین زده شد! پیشنهاد میکنم حتما به صفحهی ویکی پدیای این مجوعه عجیب و غریب سر بزنید، مخصوصا اگر دوست دارید که الگوریتمهایی که برای تولید این دسته از فرکتالها مورد استفاده قرار میگیرند چه جوری هستند!
برای مطالعه، پیشنهاد میکنم کتاب زیر رو بخونید، خیلی خوب توضیح داده هم فرکتالها رو هم آشوب رو!
به عنوان حسن ختام، یک جمله از مندلبرو رو نقل میکنم (از سخنرانی تد ۲۰۱۰) : «خب، اجازه دهید تمام کنم. این شکل در اینجا تنها از یک تمرین در ریاضیات محض بوجود آمد. ظهور شگفتی های بی پایان از قواعد ساده، که بی نهایت تکرار می شوند.»
«حالا، اینجا چیز دیگری است که نسبتا جالب است. یکی از مخرب ترین رویدادها در تاریخ ریاضیات، که توسط بسیاری از مردم درک نشده، در حدود ۱۳۰ سال پیش رخ داده است، ۱۴۵سال پیش. ریاضیدانان شروع به خلق اشکالی که وجود نداشتند کردند. ریاضیدانان شروع به خودستایی کردند به حد مطلقا شگفت انگیزی که انسان بتواند چیزهایی را اختراع کند که طبیعت نمی دانست. به طور خاص، توانست چیزهایی اختراع کند مانند یک منحنی که صفحه را پر می کند. یک منحنی، منحنی است، یک صفحه، صفحه است، و این دو ترکیب نخواهند شد. خب، آنها ترکیب می شوند! مردی به نام پیانوچنین منحنی هایی تعریف کرد، و آن موضوع فوق العاده مورد علاقه واقع شد. آن موضوع بسیار مهم، اما بیشتر جالب توجه بود به دلیل یک نوع شکاف، یک جدایی بین ریاضیات آمده از واقعیت از یک طرف، و از طرف دیگر ریاضیات جدیدی که از ذهن ناب انسان آمده است. خب، من بسیار متاسف بودم برای تذکر اینکه ذهن ناب انسان در حقیقت، آنچه را برای یک مدت طولانی دیده شده بود بالاخره دیده است! و بنابراین من اینجا چیزی را معرفی می کنم، مجموعه ای از جریان های یک منحنی صفحه پر کن…»بنوآ مندلبرو (پدر هندسهی فرکتالی) ، سخنرانی تد ۲۰۱۰
توی پست دوم فرکتالها در مورد بعد (یا ناهمواری) غیرصحیح فرکتالها توضیح دادم. مثلا دیدیم که بعد برفدانهای که ساختیم ۱/۴۶ و بعد مثلث سیرپینسکی ۱/۵۸ به دست اومد. حالا فرض کنید که بعد از محاسبه بعد یک فرکتال، اون عدد دقیقا «۲» به دست بیاد! به نظرتون این چه معنی میده؟ اگر این اتفاق بیفته اون موقع فرکتال شما کل صفحه رو پر میکنه! یعنی به ازای هر نقطه از صفحه یک نقطه از فرکتال وجود داره. برای توضیح بیشتر اجازه بدید که وارد موضوع «خمهای فضا (صفحه) پر کن بشم»:
خمهای فضا پرکن:
خیلی از اوقات نیازه که مختصات فلان نقطه در فضا رو بدونیم. توی این جور مواقع،بسته به نوع مسئله، از دستگاه مختصاتی استفاده میکنیم که به کمک اون راحتتر بتونیم مختصات نقاط دلخواه رو مشخص کنیم. به عنوان مثال همهی ما از دستگاه مختصات دکارتی (کارتزی) توی دبیرستان استفاده میکردم. دستگاهی که برای مشخص کردن هر نقطه از فضا کافی بود فاصلهی فضایی اون نقطه از مبدا (همون x, y, z) رو بدونیم. یا مثلا همهی دانشجوهای فیزیک میدونند (یا باید بدونند!) زمانی که توی فضای ۳ بعدی با مسئلهی نیروی مرکزگرا مواجه میشند بهتره که از دستگاه مختصات کروی استفاده کنند. توی دستگاه کروی از دو تا زاویه و یک فاصلهی شعاعی استفاده میشه تا مختصات هر نقطه از فضا مشخص بشه. شاید رفتن از دستگاه دکارتی به کروی مسئله رو راحتتر کنه ولی چیزی که فرق نمیکنه اینه که برای توصیف هر نقطه در فضا چه در دستگاه دکارتی و چه در فضای کروی به ۳ تا پارامتر نیاز داریم و تعداد پارامترها تغییر نمیکنه! (اگر الان دارید به مختصات تعمیم یافته فکر میکنید اولا آفرین، ثانیا لطفا فعلا فراموشش کنید چون من میخوام یه چیز دیگه بگم!) حالا فرض کنید که یک خم با ابتدا و انتهای مشخص دارید. خم یک موجود یک بعدیه که توی یک فضای ۲ بعدی و یا بیشتر جا میشه و زیر مجموعهای از اون فضاست. شما میتونید خمتون رو تقسیم بندی کنید (مثل خط کش). اگر نقطهی ابتدایی خمتون رو مبدا در نظر بگیرید (انتخاب این نقطه اختیاری، هر نقطهی دیگهای رو میتونید در نظر بگیرید)، اون موقع مختصات (موقعیت) هر نقطهای از خم رو میتونید با استفاده از مبدا و تقسیم بندی که انجام دادید، داشته باشید! مثلا در فاصله ۳ سانتی متری نقطهی A و در فاصلهی ۲.۳۴ سانتی متری نقطهی B قرار داره. این نقاط یکتا هستند، به عبارت دیگه توی یک فاصلهی مشخص فقط یک نقطه پیدا
میشه! کاری که انجام دادیم این بوده که هر نقطه از خم رو فقط با «یک» پارامتر مشخص کردیم که خیلی کار خوبیه ولی متاسفانه یه مشکلی هست و اون اینه که ما با این کار فقط مختصات نقاطی که روی خم مورد نظر ما هستند رو تونستیم با یک پارامتر مشخص کنیم و برای بیان مختصات سایر نقاط فضا مجددا به پارامترهای بیشتری نیاز داریم( 🙁 ).
اینجا بود که شخصی به نام پیانو (Giuseppe Peano) تصمیم گرفت که خمی بسازه که کل فضا رو پر کنه، اون موقع میشه مختصات هر نقطه از فضا رو فقط با یک پارامتر مشخص کرد و این یعنی عالی!
راستش پیانو این ایده رو از کانتور ریاضیدان بزرگ آلمانی گرفته بود. چون که کانتور قبلا نشون داده بود که: «تعداد (بیشمار) نقاط در یک بازهی بسته برابر با تعداد تقاط در هر فضا با بعد محدوده». این جوری شد که خمهای فضا پر کن توسط پیانو ساخته شد و به خاطر همین به خمهای که فضاهای ۲ بعدی (صفحه) رو پر میکنند معمولا میگند خم پیانو. یک سال بعد از مطرح کردن خمهای فضا پر کن توسط پیانو، دیوید هیلبرت
خمهای فضا پرکن مختلفی رو ارائه داد که فکر کنم این موضوع با کار هیلبرت کامل شد تقریبا! نکته این بود که ریاضیدانها فکر میکردند چیزهایی ساختند که واقعا توی دنیا واقعی وجود ندارند و این از ذهن ناب بشر اومده. ولی همین جوری که مندلبرو گفت (ابتدای پست) ریاضیدانها فقط چیزی رو دیده بودند که برای مدتهای طولانی در طبیعت دیده شده بود! به این صفحه نگاه کنید، فرکتالهای مختلفی با بعد (ناهمواری)های مختلفی رو شامل میشه، از جمله اونهایی که بعدشون صحیح و فضا پر کن هستند!
فرکتالهای تصادفی:
به برفدانهی کخ برگردیم در قسمت اول. مطابق شکل چند مرحله از ساخت این برفدانه رو میبینیم. شیوه ساخت این فرکتال ابتدایی آسونه و قاعده هم داره! یعنی اینکه هر بلایی که سر یک ضلع بیاد سر بقیه اضلاع هم میاد و از اون مهمتر هر مرحلهای که برای ساخت پیش میریم از «یک» قاعده فقط پیروی میکنیم (اینکه هر پارهخط به ۳ قسمت مساوی تقسیم میشه، قسمت وسط دور ریخته میشه و دو قسمت هم اندازه با یکی از اون سه قسمت به شکل اضافه میشه.) در حقیقت ما با یک فرایند کاملا منظم، یک شکل عجیب (در نگاه اول!) رو میسازیم. در قسمت اول محیط و مساحت این فرکتال به راحتی حساب شد و همین طور با استفاده از رابطهای که توی قسمت دوم برای محاسبه بعد (ناهمواری) ارائه شد، بعد این فرکتال log۴/log۳ = ۱/۲۶ به دست میاد! پس این یک فرکتال منظم هست. حالا اگر اینقدر منظم پیش نریم چه اتفاقی میافته؟ برای مثال اگر در مرحلهی اول که دو قسمت برابر رو اضافه میکنیم و یک مثلث جدید میسازیم سر مثلث رو به بالا باشهو برای مرحلهی بعد سرمثلث ها رو به پایین باشه و همین جوری یک در میون عوض بشه اون موقع شکل از این نظم خارج میشه و دیگه توی هر مرحله با یک قاعده سر و کار نداریم. میشه باز بی نظمی رو بیشتر کرد. این دفعه هر مرحله رو که میخوایم انجام بدیم سکه بندازیم مثلا، اگر شیر اومد سر مثلث رو به بالا باشه و اگر خط اومد سر مثلث رو به پایین. با این کار (که هر مرحله مطابق با یک قاعدهی تصادفی ما فرکتال رو میسازیم) در نهایت به یک فرکتال غیر ابتدایی میرسیم که دیگه واقعا ساده نیست، اسم این فرکتال، فرکتال تصادفیه!
فرکتال های تصادفی بیشتر به شکلهایی که توی طبیعت هستند نزدیکند تا فرکتالهای غیر تصادفی. ولی خب یک سری پیچیدگی ها به این دسته از فرکتالها به خاطر تصادفی بودنشون اضافه میشه که بررسی کامل اونها از حوصله شما و سواد من احتمالا خارجه و نیاز به نظریههای پیشرفته احتمالات داره. با این وجود فقط به چند نکته دربارهی این دسته از فرکتالها اشاره میکنم؛
اول اینکه ایندسته از فرکتال ها دیگه دقیقا خودمتشابه و قطعه های کوچیکتر دقیقا مثل کل شکل نیستند! با این وجود شباهت زیادی هنوز وجود داره. به همین خاطر میگند فرکتالهای تصادفی، به طور آماری خودمتشابه هستند. حقیقت هم اینه که واقعا طبیعت رو باید آماری بررسی کرد، خوشبختانه یا متاسفانه!
از طرف دیگه به خاطر اینکه فرکتالهای تصادفی به طور آماری خودمتشابه هستند دیگه محاسبهی بعد (ناهمواری) برای این دسته از فرکتالها به این راحتی ها نیست! بعد یک فرکتال غیر تصادفی با بعد همون فرکتال ولی با ساختار تصادفی ممکنه برابر یا نابرابر باشه.
مثلا برفدانهی کخ و برفدانهی تصادفی کخ هر دو داری بعد log۴/log۳ = ۱/۲۶ هستند ولی لزوما در مورد بقیه فرکتالها این برابری وجود نداره!
نکته: فرکتالهای غیرمعمولی تصادفی نیستد!
درسته که فرکتالهای تصادفی شکل عجیب و غریبی دارند ولی هر فرکتالی که شکلش برای ما عجیب به نظر برسه لزوما تصادفی نیست؛ ممکنه با یک قاعدهی منظمی ساخته شده باشه که به نظر ما تصادفی برسه! کافیه که شکلتقارن خوبی نداشته باشه یا اینکه قاعدهی ساختش یکمی پیچیده باشه اون موقع به راحتی میشه گول خورد! پس مواظب باشید که گول ظاهر فرکتالها رو نخورید 😀 مثلث و فرش سیرپینسیکی میتونند با یک شکل غیرعادی ظاهر بشند، درصورتی که با یک قاعدهی کلی ساخته شدند. هر چند که اینها تقارن خوبی ندارند ولی تصادفی نیستند!
بازی آشوب:
فرض کنید یک مثلث با رئوس A , B , C داریم. یک نقطهی دلخواه داخل این مثلث انتخاب میکنیم و اسمش رو میذاریم نقطهی 0. بعد تاس میریزیم و بسته به این که عددی که اومدی چنده به طرف یکی از رئوس حرکت میکنیم، جوری که مثلا اگر عدد ۱ یا۲ اومد به سمت راس A، اگر عدد ۳ یا ۴ اومد به سمت راس B و اگر ۵ یا ۶ اومد به طرف راس C حرکت میکنیم. فرض کنید که عدد تاس ۲ هست، پس به طرف راس A حرکت میکنیم و بین نقطهی 0 و راس A نقطهی 1 رو مشخص میکنیم. (خط واصل نقطهی 0 و راس A رو رسم میکنیم و وسط این پاره خط رو 1 نام گذاری میکنیم.) مجددا تاس میریزیم و بسته به این که چه عددی بیاد دوباره مثل قسمت قبل به سمت راس مطلوب میریم و بین اون راس و نقطهی 1 رو 2 نام گذاری میکنیم. برای مثال اگر توی این مرحله عدد تاس ۵ باشه باید نقطهی 1 رو به راس C وصل کنیم و وسط این پاره خط رو 2 نام گذاری کنیم. اگراین کار رو همین جوری ادامه بدیم نقاط مختلفی داخل مثلث ایجاد میشه که فعلا به ظاهر چیز به دردبخوری نیستند! ولی اگر این کار رو ۱۰۰ بار یا ۱۰۰۰ بار یا ۱۰۰۰۰۰ بار انجام بدیم به یک شکل آشنا میرسیم، به شکل نگاه کنید:
خب این فوقالعاده جالبه! ما با استفاده از یک فرایند کاملا تصادفی (شانسی) به یک چیز کاملا مشخص رسیدیم! این برای شما عجیب نیست؟ ما کاملا الله بختکی تاس ریختیم و نقطه گذاشتیم و رسیدیم به مثلث سیرپینسکی! بازی آشوب اثبات تحلیلی خوبی داره که به نظرم گفتنش اینجا ممکنه حوصلهتونو سر ببره!
بازی آشوب به ما نشون داد که یک سیستم دینامیکی تصادفی میتونه منجر به نتایج مشخصی بشه و به عبارت دیگه از دل یک فرایند کاملا نامنظم، نظم به وجود میاد! نکتهی قابل توجه اینه که اگر ما شانس (تاس ریختن و انتخاب تصادفی هر راس) رو کنار بذاریم و از یک فرایند مشخص استفاده کنیم، مثلا ABCABCABC…اون موقع دیگه به مثلث سیرپینسکی نمیرسیم! چیزی که خیلی جالبتره اینه که هرشکلی (چه فرکتالی چه غیرفرکتالی) رو میشه به کمک یک بازی آشوب یا یک بازی آشوب تعمیم یافته ساخت!
توی بازی آشوب تعمیم یافته از تبدیلات آفین استفاده میشه. (تبدیلات آفین تبدیلاتی هستند که خطوط موازی هر شکل رو پس از تبدیل موازی نگه میدارند). هر حرکت توی بازی آشوب تعمیم یافته یک تبدیل آفینه و شما به کمک این بازی میتونید هر شکلی رو که دوست دارید بسازید! به همین سادگی، به همین خوشمزگی! مثلا با یک بازی آشوب تعیمیم یافته با و استفاده از چهارتا تبدیل آفین میشه یک سرخس ساخت!
این پست رو با اشاره به یک قضیه به پایان میبرم؛
قضیهی کلاژ: «برای هر شکلی با هر هندسهای میتوان یک بازی آشوب ساخت که آن شکل را تولید کند.».
این قضیه (و بازی آشوب) پل بین بینظمی و نظم هست. شما از هرج و مرج به نظم و از نظم میتونید به هرج و مرج برسید! از کاربردای دیگهی این قضیه فشرده سازی تصاویره. فرض کنید که شما یک فایل تصویری حجیم رو میخوایید که برای کسی ایمیل کنید و اینترنت خوبی ندارید یا اینکه میخوایید از یک شبکهی ضعیف ردش کنید؛ کافیه به جای تصویر، با استفاده از قضیه کلاژ، بازی آشوبی که اون رو تولید میکنه (چند خط کد که کامیپوتر براتون میسازه) بفرستید و شخصی که این بازی رو دریافت میکنه با اجرا کردنش میتونه به تصویر مطلوب برسه!
پیشنهاد میکنم فیلم «آشوب (۲۰۰۶)» رو ببینید!فیلم علمی نیست ولی توش در مورد بینظمی و اینا حرف زده میشه که ممکنه براتون جالب باشه! به نقل از ویکی پدیا: «داستان دربارهی یک گروه سارق مسلح است که به بانکی حمله کرده و از حساب فردی سرقت میکنند. پلیسانی که به دنبال این افراد هستند عبارتند از یک مامور ابقا شده (زیرا سارقان بانک فقط چنین بازرس معلق شدهای را قبول دارند، با بازی جیسون استاتهام) و دستیارش که فرزند یک پلیس اسطورهای است. دستیار متوجه می شود که سارقان به طور رمزی از نظریه آشوب حرف میزنند و با دقت بیشتری تمام مدارک را بررسی میکند تا به این نتیجه میرسد که باید به دنبال چه افراد سابقداری برود. او متوجه میشود هدف آنها سرقت یک میلیارد دلار پول بوده که از طریق ویروسهای کامپیوتری دزدی شده است …»
معمولا کتاب هایی که بیانگر زندگی افراد تاثیر گذار هستند رو دوست دارم، به شرطی که نویسندهش قصد کاسبی نداشته باشه! از طرفی خیلی وقته که سراغ فیزیک اومدم، برای همین سعی کردم کتابهایی که انتخاب میکنم معطوف به فیزیکدان ها و ریاضیدان ها باشه. کتاب «دنیایی که من می بینم» نوشته آینشتین رو خوندم جالب بود. یک سری کتاب دیگه هم هست که فیزیکدان ها نوشته باشند: «جز و کل» نوشتهی هایزنبرگ، «زندگی چیست؟» نوشتهی شرودینگر و … همین طور چند تا فیلم خوب هم پیدا کردم؛ یکیشون «ذهن زیبا» داستان زندگی جان نش ریاضیدان برنده نوبل اقتصاد بود. یکی هم «آینشتاین و ادینگتون» که ماجرای نسبیت رو به تصویر میکشید و آخری هم فیلم «فاجعهی چلنجر» ماجرای انفجار شاتل چلنجر و بررسی اون فاجعه توسط ریچارد فاینمن بود! دیدن این سه تا فیلم رو به علم (به ويژه فیزیک) دوستان پیشنهاد میکنم.
اخیرا کتاب «حتما شوخی میکنید آقای فاینمن!» Surely You’re Joking, Mr. Feynman!”: Adventures of a Curious Characterرو خوندم! فوق العاده بود! ماجرای زندگی فاینمن به روایت خودش! اطلاعی در مورد ترجمهی کتاب ندارم ولی شنیدم که این کتاب با مشخصات: «ماجراجوئیهای فیزیکدان قرن بیستم ریچارد فاین من/ رالف گیل تون؛ مترجمین توراندخت تمدن (مالکی)، اردوان مالکی/ مشخصات نشر: تهران: علم، ۱۳۸۲» خیلی وقت پیش ترجمه شده (من توی بازار ترجمه شده ش رو ندیدم تاحالا، اگه هم باشه احتمالا هرس شده!) [دانلود کتاب]
فاینمن برنده جایزه نوبل فیزیک و همین طور جایزه های مهم دیگه ای هست و بیان اینکه فاینمن جزو ده فیزیکدان بزرگ کل تاریخه جفا نیست؛ اما چیزی که سبب شده تا فاینمن اینقدر محبوب بشه هیچکدوم از این ها نیست! فاینمن جذاب و دوست داشتنی بود و هست چون که یک معلم فوق العاده بود و شخصیت جالبی داشت. درس گفتارهای فاینمن کماکان از بهترین دوره های فیزیکه! در مورد بقیه آثار فاینمن به صفحهی ویکی پدیا فاینمن رجوع کنید! کتاب «حتما شوخی میکنید آقای فاینمن!» ماجرای زندگی فاینمن رو از دوران کودکی تا زمانی که جایزه نوبل رو میگیره شامل میشه (بقیهی زندگی فاینمن توی کتاب «چه اهمیتی داره که مردم چی فکر میکنند؟» نوشته شده! اونم کتاب خوبیه، ولی به جذابیت این نیست!). «حتما شوخی میکنید آقای فاینمن!» جزو اون دسته از کتابهاییه که واقعا جذابه، جوری که شما همهش دوست دارید ببینید بعدش چی میشه! قول میدم خوندن این کتاب حسابی هیجان زده تون کنه!
توی پست قبلی مقدمهٔ کوتاهی دربارهٔ فرکتالها و اینکه هندسهٔ توصیف گر طبیعت یک هندسهٔ فرکتالی هست یک توضیحاتی دادم. صرف نظر از فرکتالهای ساختگی (فرکتالهایی که ریاضیدانها معمولاً میسازند مثل برفدانه کخ) به هر طرف که نگاه کنید میتونید یک فرکتال طبیعی رو مشاهده کنید. سر سفره «کلم ترشی (یا بروکلی)»، کنار ساحل «خطوط ساحلی»، «برگ درخت»، «ششها (ریه)»، «رعد و برق» و … خب این فرکتالها چه ویژگی دارند؟ فرکتالها ۳تا ویژگی خاص دارند که بهشون اشاره میکنم:
۱) فرکتال ها خودمتشابه هستند!
یک گلکلم یا کلم بروکلی رو در نظر بگیرید؛ اگه با یک چاقوی تیز، یکی از گلچههای گل کلم رو ببرید و جداگانه بهش نگاه کنید؛ چیزی که به نظر میرسه یک گل کلم کامله، اما کوچکتر! اگه باز برش بدید، دوباره، دوباره، دوباره، …، شما گلکلمهای کوچکتری بدست می آرید. به تجربه دیده شده که بعضی از اشکال این خاصیت عجیب رو دارند، یعنی هر قسمت از شکل مثل کل شکله با این تفاوت که اندازه کوچکتری داره. به این خاصیت خود متشابهی میگند. توی برفدانه کخ هم اگر قسمتی از شکل روجدا کنید میبینید که دقیقاً مثل کل شکله و این تشابه هیچ وقت قطع نمیشه و همینطور ادامه داره! ممکنه که شما بگید یک خط راست هم اگر تکهتکه بشه باز هم شکل قسمت اول رو داره پس فرکتاله! اولا اشتباه نکنید یک ویژگی شرط لازمه نه کافی! در ثانی معمولاً منظور ما از خود متشابه بودن، خود متشابه بودن در یک الگوی غیرعادی و غیربدیهیه!
۲) فرکتال ها دارای بعد غیرصحیح هستند!
همیشه ما با ابعاد صحیح روبه رو بودیم! مثلاً میگیم خط موجودی ۱بعدی، مربع یک شکل ۲ بعدی و مکعب یک شکل ۳بعدیه (ابعاد اقلیدوسی، همه هندسه ای که ما اول یادمیگیریم اقلیدوسی هست)! حتی فضا-زمان در نسبیت ۴ بعدیه و نه مثلاً ۳/۴۵ بعدی! همینطور نظریههایی مثل ریسمان هم که فراتر از ۳ بعد رفتهاند هنوز تعداد بعد توجیه کنندهشون صحیحه مثلاً ۱۱ نه ۱۱/۲۴! ممکنه بپرسید این غیرصحیح بودن بعد فرکتالها دیگه چه صیغه آیه! پس اجازه بدید که «بعد» رو تعریف کنیم. به این شکل نگاه کنید:مطابق شکل، فرض کنید که از یک قطعه شکل سمت چپ میخوایم شکل بزرگتر (با بزرگنمایی ۳ برابر) رو درست کنیم؛ برای این کار به چند قطعهٔ هم اندازه با شکل سمت چپ نیاز داریم؟ برای خط معلومه، اگه همون خط قبلی سه برابر بشه (طولش) شکل جدید حاصل میشه، پس به ۳قطعه هماندازه نیاز داریم. برای مربع هم مثل خط میمونه با این تفاوت که هم طولش ۳ برابر میشه و هم عرضش (به شکل نگاه کنید) پس ما به ۹ قطعهٔ هماندازه نیاز داریم؛ و وقتی هم که مکعب میشه، بزرگنمایی هم برای طول و هم برای عرض و هم برای ارتفاع اتفاق افتاده و این دفعه به ۲۷ مکعب نیاز داریم. (به شکل نگاه کنید!) خب این عددهای به دست اومده رو دوباره نگاه کنیم. من توی یک جدول مینویسمشون؛
فکر کنم رابطه ای که بین این اعداد هست رو فهمیدید: ۳ و ۹ و ۲۷! یک رابطه که یک تصاعد هندسی هست رسما:
تعداد قطعه هماندازه برای ساخت شکل جدید = بزرگنمایی به توان بعد شکل
از روی این رابطه با استفاده از لگاریتم گیری از طرفین میشه بعد را بدست اورد، یعنی «بعد» میشه:
بعد = لگاریتم تعداد قطعه هماندازه برای ساخت شکل جدید تقسیم بر لگاریتم بزرگنمایی
اگر n تعداد قطعات و m بزرگنمایی باشه:
ما در حقیقت یک تعریف از بعد ارائه کردیم. بعد خودمتشابهی! خب با این تعریف بریم سراغ محاسبهی ابعاد فرکتال ها؛ فرض کنید یک برفدانه به این شکل میسازیم که مثل شکل قبل از یک مربع با (با بزرگنمایی ۳) یک مربع بزرگتر که شامل ۹ مربع هم اندازه با مربع اولیه هست به وجود میاد.
حالا مربعهای کوچیک بالایی، چپی، راستی و پایینی مربع کوچیک مرکز رو مطابق شکل حذف میکنیم. اگر همین روند رو ادامه بدیم یک برف دانه ساخته میشه! (n روی شکل منظور مرحلهٔ ساخت شکله با n تعداد قطعات کوچکتر اشتباه نگیرید!)
بعد این برفدانه همین جور که میبینید یک عدد بین ۱ و ۲ هست! و اینجاست که دیگه بعد، یک عدد صحیح به دست نمیاد. مندلبرو اسم این بعد رو «ناهمواری» میذاشت که تعریف جالبتریه مخصوصاً برای اجسامی که دارای برآمدگی هم باشند! چیزی که الان مطرح میشه اینه: معنی این ۱/۴۶۴۹۷ چیه؟ ما میدونیم که یک موجود دو بعدی یعنی اینکه توی صفحه جا میشه و یک موجود یک بعدی یعنی یک خط! پس این عدد بین ۱ و ۲ یعنی چی؟! این به همون ماجرا برمیگرده که وقتی ساختن این شکل رو تا بینهایت ادامه بدیم با یک شکل پر از لبه رو به رو میشیم. در ضمن یادآوری کنم که این فقط یک عدد هست! هر چند مفهوم قشنگی پشتش هست ولی یک عدده که ناهمواری شکل رو مطرح میکنه! به هر حال کاری که ریاضیدانها بکنند قرار نیست واقعاً واقعی باشه 🙂
یک نکتهٔ دیگه اینکه هیچ وقت مطرح نمیشه که «اندازهٔ یک فرکتال» یا «متوسط اندازه یک فرکتال» چقدره بلکه همیشه ما با همین عدد که بعد غیرصحیح یا ناهمواری فرکتال هست کار میکنیم! شما امروز میتونید یه عدد به عنوان ناهمواری به کامپیوتر بدید و اون در کسری از ثانیه یک شکلی با اون ناهمواری رو براتون تولید کنه یا یک شکل دلخواه رو با اون ناهمواری بازتولید کنه! به همین سادگی! تقریباً هندسه فرکتالی پیشرفت زیادی کرد چون سر و کله کامپیوتر پیدا شد. در مورد این توی قسمت آخر بیشتر توضیح میدم!
خب بریم سراغ یه مثال دیگه؛ مثلث سیرپینسکی فرض کنید یک مثلث (متساوی الاضلاع برای قشنگی بیشتر!) داریم. وسط هر ضلعش رو مشخص میکنیم و بهم وصلشون میکنیم تا ۴ تا مثلث جدیدتر ساخته بشه. مثلث وسط رو دور میریزیم. این کارو تا ابد انجام میدم. الان ما یک فرکتال داریم که بعدش ۱/۵۸ هست: این عدد بیشتر از عدد قبل هست، فکر کنم شکل خودش نشون میده که ناهمواری مثلث سیرپینسکی از برف دانه ای که ساختیم بیشتره!
۳) بعد خود متشابهی فرکتالها از بعد توپولوژیک اونها بیشتره!
این که بعد توپولوژیک دقیقا چیه، چیزیه که از حوصلهی این پست خارجه! شاید جداگونه در موردش بنویسم ولی فعلا به عنوان آشنایی، همین جوری که ما بعد خود متشابهی رو به صورت تقسیم دوتا لگاریتم تعریف کردیم میشه یه جور دیگه با ادبیات و شاید بهتره بگم ریاضیات مناسبتری بعد رو تعریف کرد و اون موقع یک سری عدد جدید به دست میاریم. این اعداد در مورد فرکتالها جوریه که با مقدار خودمتشابهی شون فرق دارند و کمتر از اونها هستند مثلا بعد توپولوژیکی مثلث سیرپینسکی ۱ و بعد خودمتشابهیش (همین جوری که حساب کردیم) ۱/۵۸۵ هست که ۱/۵۸۵ > ۱!
خب جمع بندی کنیم؛ فرکتال ها دارای سه ویژيگی: ۱) خودمتشابهی ۲) دارای بعدخودمتشابهی غیرصحیح و ۳) بعدتوپولوژیکی کمتر از بعد خودمتشابهی هستند! پیشنهاد میکنم ویدیو زیر رو حتما ببینید؛ سخنرانی مندلبرو (پدر هندسه فرکتالی) در تد هست. درست چندماه بعد از این سخنرانی، مندلبرو، پیرمرد مهربان دنیای فرکتال ها به خاطر سرطان لوزالمعده ای که داشت از دنیا رفت. روحش قرین آرامش باد!
«هنگامی که کودکان به دانشمندان بزرگ چنان بنگرند که به موسیقیدانان و هنرپیشه های بزرگ مینگرند، آنگاه تمدن بشری به سطح بعدی میجهد.»
برین گرین
“When kids look up to great scientists the way they do to great musicians and actors, civilization will jump to the next level” ― Brian Greene
برایان گرین (به انگلیسی: Brian Greene) (زاده در ۹ فوریه۱۹۶۳، نیویورک) فیزیکدانآمریکایی و یکی از نظریهپردازان نظریه ریسمان است. او از سال ۱۹۹۶ در دانشگاه کلمبیا به تدریس میپردازد. وی در ۱۲ سالگی آن چنان در ریاضی توانایی پیدا کرد که یک استاد دانشگاه به او خصوصی درس میداد. گرین در سال ۱۹۸۰ وارد دانشگاه هاروارد شد و لیسانس فیزیک گرفت. در سال ۱۹۹۶ دکترای خود را با بورس رودز در دانشگاه آکسفورد گرفت. گرین از سال ۱۹۹۶ تا کنون در دانشگاه کلمبیا به سر میبرد. و به آموزش و پژوهش در کیهانشناسی و نظریه ریسمان میپردازد. پیش از این او در سال ۱۹۹۰ به دانشکدهٔ فیزیک دانشگاه کرنل پیوسته بود. وی استا دی خود را در سال ۱۹۹۵ در این دانشگاه گرفته است. گرین کتاب جهان زیبا را در سال ۱۹۹۹ نوشت که بسیار پرفروش بود و جایزههای جهانی بسیاری را از آن خود کرد. این کتاب به نظریه ریسمان و اِم میپردازد. پس از آن یک فیلم ۳ ساعتهٔ عامهفهم در شبکهٔ پیبیاس که بر پایهٔ کتاب جهان زیبا ساخته شده بود موفقیت او را دوچندان کرد. کتاب جدید او ساخت کیهان نام دارد که در سال ۲۰۰۴ منتشر شد و در آن از زمان و جهان سخن میرود.
وی در پروژهٔ ساخت بمب اتم مشارکت داشت و بعدها یکی از افراد گروهی بود که به بررسی واقعهٔ انفجار فضاپیمای چلنجر پرداخت. ریچارد فینمن در سال ۱۹۵۹ در انجمن فیزیک آمریکا در سخنرانی مشهور خود به بررسی بعد رشد نیافتهٔ علم مواد پرداخت و توجه دانشمندان را به توانایی بشر برای دست کاری مواد در مقیاس اتمی جلب نمود. سخنرانی که میتوان آنرا اولین بحث در زمینه فناوری نانو دانست.
همچینین وی به دلیل ماجراجوییهای فراوانش که در کتابهای «حتماً شوخی میکنید آقای فاینمن؟» و «چه اهمیتی میدهید که مردم دیگر چه فکر میکنند؟» به تفصیل راجع به آنها صحبت شده، مشهور است.
ایشون سخنرانی جالبی در مورد اینکه «علم چیست؟» در پانزدهمین گردهمایی معلمان ملی علوم در نیویورک (سال۱۹۶۶) ایراد کردند که سه سال بعد از اون در جلد هفتم ژورنال «معلم فیزیک» منشتر شد.
خواندن این سخنرانی خالی از لطف نیست! شما می تونید به صورت pdf دانلودش کنید یا اینکه به قسمت«ادامه خواندن» برید و اون رو بخونید!