رفتن به نوشته‌ها

برچسب: علی اکبر صالحی

ترابرد کوانتومی از برج میلاد به برج آزادی! کسی صدای من رو می‌شنوه؟

چندی پیش بود که آقای دکتر علی اکبر صالحی خبر از پروژه‌ی مخابره‌ی کوانتومی بین برج میلاد و برج آزادی دادند. این فرآیندی است که در طی آن اطلاعات با امنیت بالایی مخابره می‌شود. این فناوری یکی از فناوری‌های روز دنیاست که پیش‌بینی می‌شود به زودی دنیای انتقال اطلاعات را تصاحب کند.

نگاره ۱- پروژه مخابره کوانتومی بین برج میلاد و برج آزادی

در این نوشته قصد داریم تا با مفهوم انتقال پیام به سبک فناوری کوانتومی آشنا شویم. این توضیح را در ۵ سطح انجام می‌دهیم. مشخصا توضیح دقیق آن جز در سطح متخصصان ممکن نیست اما در هر سطح تلاش کردیم تا مزه‌هایی از این فرآیند را بچشیم.

۱ – دانشمند کوچک‌ و کنجکاو!

شاید تا به حال تلفن آقای بل را دیده باشید. اگر تا به حال ندید؛ خیلی راحت می‌توانید در خانه درست کنید. دو عدد لیوان یکبار مصرف کاغذی را از انتها با یک نخ به هم متصل کنید. حالا یک لیوان را به دوست خود دهید و دیگری را در دستان خود نگه دارید. از دوست خود بخواهید تا لیوان را روی گوش خود نگه دارد. در حالی که نخ در حالت کشیده قرار دارد؛ درون لیوان شروع به صحبت کنید. حدس بزنید چه می‌شود؟!

نگاره ۲ – تلفن آقای بل Tin can telephone

دوستتان حرف‌های شما را درون لیوان خودش خواهد شنید. شاید فکر کنید که او تقلب کرده است و دارد از خارج لیوان با گوش دیگرش صدای شما را می‌شنود. پس بیاید امتحان کنیم! کمی نخ را بلندتر درست کنید و آهسته‌تر صحبت کنید. به من اعتماد کنید که او دارد صدای شما را از لیوان می‌شنود. اما چرا؟

مهم‌ترین مسئله نخ است. نخی که میان دو لیوان در دو جای مختلف ارتباط ایجاد کرده است. اگر در حین صحبت شما فرد سومی نخ را ببرد دیگر صدای شما منتقل نمی‌شود. در ترابرد کوانتومی اتفاقی شبیه به این می‌افتد! اما این بار فاصله‌ی دو دوست از هم می‌تواند بسیار بلندتر باشد. باز هم میان دو نقطه ارتباط برقرار است اما از جنس نخ خیاطی نیست! به هر ترتیب هر دو دوست در دست خود چیزی شبیه به لیوان دارند که اگر یکی از آن‌ها آن را تکان دهد دیگری در سمت دیگر متوجه خواهد شد.

اگر توانستید تا اینجا حرف‌های من را متوجه شوید پس حتما خیلی باهوش و کنجکاو هستید! پیشنهاد می‌کنم خواندن این متن را ادامه بدهید اما اگر متوجه نشدید؛ هیچ اشکالی ندارد.

۲- نوجوان جستجوگر!

اهل فیلم هستید؟ در بعضی از فیلم‌های سبک هیجانی فیلم‌برداری‌ها در تونل باد انجام می‌شود. در این حالت تلاش می‌کنند که برای دو بازیگر حالت معلق بودن را شبیه‌سازی کنند. آن‌ها به دور خود می‌چرخند و در هوا شنا می‌کنند. این بار که خواستید تماشا کنید به یک صحنه خوب دقت کنید.

صحنه‌ای که دو بازیگر در ابتدا در حالت ساکن و بی‌وزن هستند و دو دست خود را به یکدیگر داده‌اند. در این حالت اگر یکی دیگری را با دست بچرخاند چه اتفاقی می‌افتد؟ حدس بزنید.

نگاره ۳- دو بازیگر که دست خود را به یک دیگر داده‌اند و تلاش می‌کنند یکدیگر را بچرخانند
نتیجه آن می‌شود که هر کدام در دو جهت خلاف هم خواهند چرخید.

بله! دیگری هم می‌چرخد. اما دقت کنید که دیگری در جهت خلاف دوست خود می‌چرخد. عجیب است نه؟! پس اگر فرض کنید که کادر فیلم برداری به گونه‌ای باشد که شما فقط یک بازیگر را در حالت چرخیدن در جهت عقربه‌های ساعت ببینید؛ حتم خواهید داشت که دیگری در جهت خلاف عقربه‌های ساعت در حال چرخش است با اینکه او را نمی‌بینید.

نکته مهم اینجاست که این دو بازیگر در ابتدا دستان خود را به یک دیگر داده بودند و چرخش خود را با چرخاندن یکدیگر شروع کرده بودند. اگر آنها دستان بلندتری داشتند و یا از یک چوب معلق بلند استفاده می‌کردند نیز می‌توانستند همین چرخش مخالف هم را برای خود ایجاد کنند.

در ترابرد کوانتومی این دو بازیگر، دو الکترون هستند که بسیار کوچکند و در ابتدا دستان خود را به یک‌دیگر داده بودند. حال که از یکدیگر فاصله گرفته‌اند اگر یکی در جهت عقربه‌های ساعت بچرخد؛ متوجه خواهید شد که طرف دیگر الکترونی است که در جهت عکس می‌چرخد. حال شاید بپرسید چطور می‌توان به کمک این ترفند بین دو نقطه هماهنگی برقرار کرد. بگذارید یک مثال بزنیم.

شما و دوستتان می‌خواهید به دو رستوان مختلف بروید. یک رستوران در برج میلاد است و دیگری در پای برج آزادی. هر کدام از این رستوران‌ها فقط دو نوع غذا در منوی خود دارند. مثلا قیمه و قورمه. پیش از راه افتادن و جدا شدن از دوست خود با او هماهنگی انجام می‌دهید. به او می‌گویید اگر الکترون او در جهت عقربه‌های ساعت چرخید، قیمه و اگر در جهت عکس چرخید قورمه را انتخاب کند. به این ترتیب با اندازه‌گیری چرخش الکترون خود در برج دیگر می‌توانید متوجه شوید که او کدام غذا را انتخاب خواهد کرد تا شما غذای دیگر را انتخاب کنید!

نگاره ۴ – منو با دو غذا در رستوران آزادی و میلاد

اگر اهل چالش فکری هستید به این فکر کنید که اگر رستوران بیشتر از ۲ مدل غذا داشت؛ چطور می‌توانستیم با دوست خود قرارداد کنیم که چه غذایی را انتخاب کند تا ما متوجه انتخاب او در برج دیگر شویم.

۳- کمی پیش از دانشگاه! [یا همان توضیح زیر دیپلمی خودمان:) ]

شاید با دو مفهوم تکانه (تندی حرکت) و چرخش الکترون (اسپین) آشنایی داشته باشید. بگذارید همین ابتدا یک افشاگری جالب برایتان بکنم. الکترون واقعا نمی‌چرخد! الکترون خاصیتی به نام اسپین دارد که مانند تکانه‌ی چرخش رفتار می‌کند. از این رو از آن به عنوان چرخش ذاتی – و نه حرکتی – الکترون یاد می‌کنند.

  • اسپین جهت دارد! درست مانند یک فرفره که می‌تواند در جهت عقربه‌های ساعت بچرخد و یا خلاف آن و یا حتی غلت بزند و بالا و پایین رقص محوری انجام دهد. در این حالت محور چرخش را محور تکانه یا تندی چرخش به دور خود فرفره در نظر می‌گیریم. به همین ترتیب الکترون نیز خاصیت در ذات خود به نام اسپین دارد که مانند تکانه‌ی چرخشی سکه یا فرفره رفتار می‌کند.
  • برآیند اسپین دو الکترون پایسته است! حتما در مورد پایستگی تکانه در درس فیزیک شنیده‌اید. تکانه چرخشی هم مانند تکانه‌ی خطی پایسته است. پیش‌تر مثالی از دو بازیگر در تونل هوا را زدیم که اگر ابتدا نچرخند و برآیند تکانه‌ی چرخشی هردو صفر باشد؛ پس از چرخاندن یک دیگر نیز برآیند صفر می‌ماند. به طریقی که اگر یکی در جهت عقربه‌های ساعت بچرخد؛ دیگری در جهت خلاف عقربه‌های ساعت می‌چرخد تا مجموع تکانه‌ی چرخشی هر دو صفر باقی بماند.

پرتوی گاما از ذرات با اسپین صفر تشکیل شده‌اند. اگر گاما واپاشی کند؛ دو الکترون از خود متولد می‌کند! پایستگی تکانه می‌گوید که اسپین دو الکترون تولید شده باید خلاف یک دیگر باشد تا برآیند آن دو مانند قبل از واپاشی صفر شود.

اتفاقی که در برج میلاد و برج آزادی می‌افتد نیز این چنین است. برج میلاد به صورت پیوسته الکترون‌هایی را دریافت می‌کند که جفت دیگرش نزد برج آزادی است. اگر برج آزادی الکترونی را دریافت کند که ساعت‌گرد می‌چرخد؛ متوجه می‌شود که برج میلاد در حال مشاهده‌ی الکترونی است که در جهت خلاف عقربه‌های ساعت می‌چرخد.

مثال پایانی بخش قبل را بخوانید. متوجه می‌شوید که از این پدیده که به خاطر پایستگی تکانه رخ می‌دهد؛ چگونه می‌توان برای هماهنگی دو نقطه استفاده کرد. اما شاید بپرسید که هر کدام از دو برج فقط الکترونی را مشاهده می‌کنند که به دست آنها رسیده است. آن‌ها کنترلی روی آن ندارند. فقط وقتی متوجه حرکت اسپینی الکترون می‌شوند که آن را مشاهده کنند و توانایی تنظیم آن را ندارند تا بتوانند انتقال پیامی صورت دهند. این مسئله نیز قابل حل است اما برای توضیح دقیق این که چطور انتقال پیام دلخواه صورت می‌گیرد نیاز داریم تا مباحثی پیشرفته را اشاره کنیم که در ادامه آمده است.

  • برای درک بهتر این داستان‌های کوانتومی این ویدیو رو ببینید:

۴ -بالای دیپلم [عالمین بالحیل!]

اگر از آسمان به زمین نگاه کنید (راستای Z)؛ چرخنده‌ها دو حالت دارند. یا در جهت ساعت می‌چرخند یا در خلاف آن! بیاید کمی بازی کنیم! من از نوشتن کلمه‌ي «ساعت و ساعتگرد» خسته شده‌ام. از این پس چرخش ساعتگرد را صفر (۰۰) می‌نامم و دیگری را (۱). اگر حالت‌های ممکن برای این دو الکترون را به ترتیب بنویسیم به چهار زوج می‌رسیم که عبارت اند از: (۰۰, ۰۱, ۱۰, ۱۱) این کلی ترین حالت چرخش یک سیستم دو الکترونی است.

اما صبر کنید گفتیم که این جفت از واپاشی یک ذره گاما بوجود آمده‌اند که در ابتدا چرخش صفر داشته است. پس هر چهار حالت یاد شده نمی‌توانند محتمل باشند و فقط دو حالت (۰۱, ۱۰) هستند که می‌توانند به قانون پایستگی تکانه احترام بگذارند. این دو الکترون را اکنون درهم‌تنیده می‌گوییم. زیرا حالت یکی مستقل از دیگری نیست.

حال که جفت الکترون را بهتر شناختیم بیاید به برهم‌کنش این سامانه با محیط فکر کنیم. اگر میان برج آزادی و برج میلاد این الکترون‌ها با ذره‌ای دیگر برخورد کنند دیگر با قطعیت نمی‌توانیم بگوییم از میان این چهار حالت فقط دوتای یادشده را می‌توانند بگیرند. در این حالت سیستم ما مختل شده است. حال قانون پایستگی برای مجموع این دو الکترون و تمام ذراتی برقرار است که با آنها برخورد کرده‌اند.

برای انتقال پیام دلخواه از همین اختلال الهام گرفته شده است. فرض کنید می‌خواهیم طرف مقابل الکترونی در حالت ۰ دریافت کند. این جفت درهمتنیده را در یک برج به گونه‌ای مختل می‌کنیم که احتمال دریافت حالت ۰ برای آن سر خط ارتباطی بیشتر شود. این اختلال را با ورود الکترون سومی در نزد فرستنده پیام انجام می‌دهیم.

۵- تازه‌ واردها به فیزیک کوانتومی

یک نکته خیلی مهم در نگاه کوانتوم مکانیک به دنیا وجود دارد. آن هم این که تا زمانی که شما اندازه‌گیریی را روی سامانه‌ی مورد مطالعه خود انجام نداده‌اید؛ سامانه در حالتی مرکب از تمام حالت‌های ممکنی است که سامانه می‌تواند به خود بگیرد. به عنوان مثال زوج متولد شده‌ی الکترون و پوزیترون را از واپاشی گاما درنظر بگیرید.

از آنجا که گاما در ابتدا چرخش ذاتی (اسپین) صفر دارد، پس از واپاشی هم سامانه باید در برآیند اندازه‌ی چرخش‌ها، اسپین صفر داشته باشد. دو حالت برای این سامانه وجود دارد. یا لنگه‌ای از این جفت که در برج میلاد دریافت می‌شود تکانه‌ی چرخشی مثبت ($\ket{0}$) دارد و دیگری در برج آزادی منفی ($\ket{1}$) و یا برعکس.

توصیف کوانتوم مکانیک را از این آزمایش یادآور شویم. اگر حالت سامانه را با $\ket{\psi}$ نشان دهیم؛ پیش از اندازه‌گیری توسط برج‌ها به صورت مرکب زیر قابل توصیف است. یعنی برهم‌نهی از دو حالت ممکن که حاصل جمع تکانه صفر دارد.

$$\ket{\psi} = \frac{1}{\sqrt{2}} (\ket{0}\ket{1} + \ket{1}\ket{0})$$

$\ket{0} \ket{1}$ نماد به این معنی است که الکترون اول در حالت چرخش ساعتگرد بوده و الکترون دوم در حالت پادساعتگرد. جمله‌ی دوم هم تعبیر مشابه و عکس دارد. ضرایب یکسان پشت هر جمله نشان دهنده آن است که دو حالت ممکن به یک اندازه محتمل هستند. حال که با نماد گذاری کوانتومی آشنا شدیم بیایم وارد هنر نمایی خود در ترابرد شویم.

ایده اصلی در ترابرد یا مخابره اطلاعات به سبک کوانتومی آن است که این سامانه‌ی دو بخشی را به کمک الکترون سومی مختل کنیم. الکترون سومی که محل نگهداری آن در برجی است که قصد انتقال پیام خود را دارد. این اختلال به صورتی زیرکانه باعث می‌شود تا طرف دیگر در برج دیگر صاحب الکترونی شود که احتمال برآمدن صفر و یکش پس از اندازه‌گیری دیگر یکسان نیست. حال کمربند خود را سفت ببندید تا الگوریتم ترابرد را باهم مرور کنیم!

۱) مرحله‌ی اول: ابتدا الکترون را …

فرض کنید این برج میلاد است که می‌خواهد پیامی به برج آزادی دهد. او الکترون سوم را که حالتی $\ket{\phi} = \alpha \ket{0} + \beta \ket{1}$ دارد؛ در کنار الکترون خود قرار می‌دهد. حال حالت سامانه سه‌تایی به صورت زیر قابل نوشتن است:

$$\begin{align}
\ket{\Psi} &= (\alpha \ket{0} + \beta \ket{1} ) \big( \frac{1}{2}(\ket{0,1} + \ket{1,0}) \big) \newline
&= \frac{1}{\sqrt{2}} \big[ \alpha \ket{0,0,0} + \beta \ket{1,0,0} + \alpha \ket{0,1,1} + \beta \ket{1,1,1} \big]
\end{align}$$

نگاره ۵ – مختل کردن سامانه جفت الکترون به کمک الکترون سوم نزد برج میلاد.
در نتیجه‌ی این فرآیند با یک سامانه سه بخشی درهم‌تنیده طرف هستیم.

کمی چشم بندی کنیم:) عبارت بالا با ضرب و مرتب سازی نیز می‌توان به صورت زیر نوشت:

$$\begin{align}
\ket{\Psi} = \frac{1}{2}\big[ &\ket{\phi^{+}} (\alpha \ket{0} + \beta \ket{1}) \newline
+& \ket{\phi^{-}} (\alpha \ket{0} – \beta \ket{1}) \newline
+& \ket{\psi^{+}} (\beta \ket{0} + \alpha \ket{1}) \newline
+& \ket{\psi^{-}} ( – \beta \ket{0} + \alpha \ket{1}) \big]
\end{align}$$

که در آن چهار جمله‌ی $\ket{\phi^{\pm}}$ و $\ket{\psi^{\pm}}$ به قرار زیر هستند. [اگر اسامی را دوست دارید؛ درگوشی به شما می‌گویم این چهار حالت را با نام حالت‌های بل می‌شناسیم.]

$$\begin{align}
\begin{cases}
\ket{\phi^{\pm}} &= \frac{1}{2} (\ket{0,0} \pm \ket{1,1}) \newline
\ket{\psi^{\pm}} &= \frac{1}{2} (\ket{0,1} \pm \ket{1,0})
\end{cases}
\end{align}$$

۲) مرحله دوم: اندازه‌گیری…

به آنچه که اکنون از حالت سامانه $\ket{\Psi}$ در عبارت گذشته رسیدیم توجه کنیم. این عبارت می‌گوید چهار حالت ممکن برای این سامانه وجود دارد. در هر کدام برای دو الکترون نزد برج میلاد یکی از چهار حالت بل را داریم و برای الکترون آخر که در نزد برج آزادی است؛ حالتی را داریم که دگر شکلی از حالت الکترون سومی است که آخرین بار وارد سامانه شد.

خوش به حالمان می‌شود اگر برج میلاد پس از اندازه‌گیری متوجه شود که دو الکترون نزد او حالت $\ket{\phi^{+}}$ را داشته‌اند. زیرا در آن صورت حالت الکترون سوم در نزد برج آزادی دقیقا همان حالتی است که برج میلاد در ابتدا در الکترون سوم خود داشت. اما اگر خوش به حالمان نشود چطور؟

به هر صورت در انتها یک حالتی شبیه به همان الکترون وارد شده در نزد برج آزادی احیا می‌شود. این حالت‌ها همگی ضرایب مشابه دارند ولی تنها علامت یا جایگاهشان جابجا شده است. در این صورت اگر برج میلاد با انتقال یک پیام کوتاه دو بیتی به برج آزادی بگوید که کدام حالت بل را مشاهده کرده است آنگاه می‌توان به کمک عملگرهای پائولی این دگرگونی‌ها را نیز برطرف کرد.

۳) حال با خیال راحت سوپ خود را بچشید!

دقت کنیم که این انتقال پیام با سرعتی بیشتر از سرعت نور انجام نمی‌شود. تا زمانی که برج میلاد به برج آزادی به کمک روش‌های کلاسیکی (مثل تلفن یا فیبر نوری) نگوید کدام حالت بل را دیده؛ برج آزادی نمی‌تواند حالت مورد نظر را از الکترون خود احیا کند.

کاری که در این فرآیند انجام دادیم خیلی بیشتر از انتقال یک پیام صفر یا یک است. ما یک بردار کامل دو بعدی را انتقال دادیم. اگر قرار بود این انتقال را با روش‌های کلاسیکی انجام دهیم؛ باید هر کدام از ضرایب آلفا و بتا را در پیام‌هایی جداگانه با بیت‌های رایج صفر و یک انتقال دادیم. اگر این اعداد گویا نبودند؛ باید تعدادی بیشمار بیت خرج این انتقال پیام می‌کردیم.

  • اگر می‌خواهید درک فنی‌تری از درهم‌تنیدگی پیدا کنید این چند جلسه از کلاس درس ساسکایند را مشاهده کنید.
  • به عنوان یک مثال ساده پیشنهاد می‌کنیم این ویدیو رو ببینید: