رفتن به نوشته‌ها

برچسب: اینشتین

اشتباه‌های زیاد آینشتین

متن پیش رو ترجمه‌ جستاری از کارلو روولی فیزیک‌دان ایتالیایی است. او عمدتا در زمینه گرانش کوانتومی کار می‌کند و بنیان‌گذار نظریه گرانش کوانتومی حلقه است. اصل این نوشته اخیرا در کتابی با عنوان There Are Places in the World Where Rules Are Less Important Than Kindness منتشر شده است. این جستار پیش از رصد امواج گرانشی نوشته شده است. رصد مستقیم امواج گرانشی در ۱۴ سپتامبر ۲۰۱۵ پنج ماه پس از انتشار این مقاله انجام شد. در سال ۲۰۱۷ این مشاهده منجر به دریافت جایزه نوبل در فیزیک شد.

شکی نیست که آلبرت آینشتین یکی از دانشمندان بزرگ قرن بیستم بود که عمیق‌تر از دیگران رازهای طبیعت را دید. آیا این به معنی این است که ما باید هر کاری را که او انجام داده‌است، درست بدانیم؟ او هرگز اشتباه نمی‌کرد؟ برعکس!
در واقع، تعداد کمی از دانشمندان به اندازه آینشتین اشتباه کرده‌اند و آن‌هایی که به اندازهٔ او نظر خود را تغییر داده‌اند انگشت‌شمارند. در مورد اشتباهات او در زندگی روزمره که موضوعی شخصی است و در نهایت به خودش مربوط است صحبت نمی‌کنم. بلکه در مورد اشتباه‌های کاملا علمی او سخن می‌گویم؛ ایده‌های اشتباه، پیش‌بینی‌های نادرست، معادلات پر از خطا و ادعاهای علمی‌ای که خود او پسشان گرفت و آن‌هایی که نادرست بودنشان ثابت شد.


اجازه دهید برایتان چند نمونه بیاورم. امروزه می‌دانیم که جهان در حال انبساط است. ژرژ لومتر، فیزیک‌دان بلژیکی، با استفاده از نظریه‌های خودِ آینشتین، موفق به درک این موضوع شد و او را از یافته‌های خود آگاه کرد. آینشتین اما آن ایده‌ها را رد کرد و در پاسخ گفت که آن‌ها بی‌معنی‌اند و تنها در دههٔ سی میلادی که انبساط واقعاً مشاهده شد حرف خود را پس گرفت. یکی دیگر از پیامدهای نظریه او وجود سیاه‌چاله‌ها است؛ او چندین متن پراشتباه در این زمینه نوشت و ادعا کرد که جهان در لبه سیاه‌چاله پایان می‌یابد. وجود امواج گرانشی که اکنون برای آن شواهد غیرمستقیم داریم نیز در نتیجهٔ نظریه‌های آینشتین است. آینشتین ابتدا نوشت که این امواج وجود دارند، اما درست پیش از آن‌که به دنبال تفسیر اشتباه نظریه خودش ادعا کند که آن‌ها وجود ندارند. سپس دوباره نظر خود را تغییر داد تا نتیجه مخالف و درست را بپذیرد.


وقتی آینشتین نظریه نسبیت خاص‌اش را نوشت، از ایده فضازمان استفاده نکرد. این ایده که گویی به مفهوم یک پیوستار (فضای پیوسته) چهاربعدی شامل فضا و زمان اشاره می‌کند، در واقع کار هرمان مینکوفسکی بود که از آن برای بازنویسی نظریهٔ آینشتین استفاده کرد. هنگامی که آینشتین از آنچه مینکوفسکی انجام داده بود آگاه شد، ادعا کرد که این کار فقط از نظر ریاضیاتی بغرنج‌کردن بیهودهٔ نظریه‌اش است، البته پس از مدت کوتاهی کاملاً نظر خود را تغییر داد و دقیقاً از مفهوم فضازمان برای نوشتن نظریهٔ نسبیت عام استفاده کرد. در موضوع نقش ریاضی در فیزیک، آینشتین بارها دیدگاهش را تغییر داد و در طول زندگی‌اش طرفدار ایده‌های گوناگونی بود که با هم صریحا در تناقض بودند.
آینشتین پیش از نوشتن معادلاتِ درست کار اصلی‌اش، یعنی نظریهٔ نسبیت عام، مجموعه مقاله‌هایی منتشر کرد که همه غلط بودند و هرکدام معادلهٔ نادرستِ متفاوتی را پیشنهاد می‌دادند. او حتی تا جایی پیش رفت که یک اثر پیچیده و مفصل منتشر کرد تا استدلال کند که این نظریه نمی‌تواند تقارن خاصی داشته باشد، تقارنی که او بعداً به عنوان اساس نظریه‌اش برگزید!


آینشتین در سال‌های پایانی زندگی‌اش، سرسختانه پافشاری می‌کرد که می‌خواهد یک نظریهٔ وحدت‌بخش برای گرانش و الکترومغناطیس بنویسد، بدون توجه به این که الکترومغناطیس جزئی از یک نظریه بزرگ‌تر (نظریهٔ الکتروضعیف) است، کما این‌که پس از مدت کوتاهی نشان داده شد. بنابراین، پروژه او در متحد کردن آن با گرانش بی‌فایده بود.
آینشتین همچنین بارها موضع خود را در مناظره‌های مربوط به مکانیک کوانتومی تغییر داد. او در ابتدا می‌گفت که این نظریه در تضاد با بقیه چیزها است. سپس پذیرفت که این‌طور نیست و خودش را محدود به پافشاری بر این ایده کرد که این نظریه ناکامل است و نمی‌تواند تمام طبیعت را توصیف کند.
در مورد نسبیت عام، اینشتین برای مدت طولانی متقاعد شده بود که معادلات در نبودِ ماده نمی‌توانند جواب داشته باشند و بنابراین، میدان گرانشی به ماده وابسته است. او دست از این باور برنداشت تا زمانی که ویلم دوسیته و دیگران نشان دادند که او اشتباه می‌کند. سرانجام نظریه را این گونه تفسیر کرد که میدان گرانشی یک موجود مجزای واقعی است که به خودی‌ خود وجود دارد.


در اثر خارق‌العادهٔ ۱۹۱۷ او کیهان‌شناسی نوین را بنیان گذاشت. آینشتین به این پی برد که جهان می‌تواند یک ۳-کره باشد. او ثابت کیهان‌شناسی را معرفی کرد که امروز مورد تایید است ولی با این کار همزمان یک خطای فاحش به فیزیک (عدم تغییر عالم در زمان) و یک خطای چشمگیر به ریاضی اضافه کرد؛ او متوجه نشد جوابی که ارائه کرده بود ناپایدار است و نمی‌تواند دنیای واقعی را توصیف کند. در نتیجه، آن مقاله‌ ترکیب عجیبی از ایده‌های بزرگِ جدید و انقلابی و انبوهی از خطاهای جدی است.


آیا این اشتباه‌ها و تغییر رویه‌ها چیزی از تحسین و ستایش ما نسبت به آلبرت آینشتین کم می‌کند؟ به‌ هیچ‌ وجه. اگر تغییری هم در ما باشد، برعکس است. به نظر من در عوض، این چیزها نکته‌ای راجع به ذات هوش به ما می‌آموزند. هوش، طرفداری سرسختانه از نظرات خود نیست بلکه آمادگی لازم برای تغییر و حتی کنار گذاشتن آن نظرات است. برای درک جهان، باید شهامت آن را داشته باشید که ایده‌ها را بدون ترس از شکست آزمایش کنید، پیوسته نظرات خود را بازبینی کنید و آن‌ها را بهبوبد ببخشید.


آینشتینی که بیش از هر کس دیگری مرتکب خطا می‌شود دقیقاً همان آینشتینی است که بیش‌تر از دیگران در فهم طبیعت موفق است و این‌ها مکمل هم و از جنبه‌های ضروری همان هوش عمیق هستند: بی‌پروایی در تفکر، شهامت خطر کردن، ایمان نداشتن به ایده‌های دریافت‌شده، از همه مهم‌تر ایده‌های خود شخص. اینکه شهامت اشتباه کردن داشته باشی، ایده‌های خود را تغییر دهی، و نه یک بار بلکه بارها، تا به مرحله کشف برسی.
آنچه مهم است درست بودن نیست، تلاش برای فهمیدن است.

تلاش برای توصیف جهان از زاویه‌ی گرانش

داستان معروف سیبی که از درخت افتاد و به سبب اون نیوتون کشف کرد که زمین جاذبه داره رو همه از بریم. این داستان چندان واقعی نیست نیوتون سالها توی اتاقش داشت با انواع و اقسام روابط سر و کله میزد تا بالاخره تونست که فیزیک جدیدی رو پایه‌گذاری کنه و واقعا با یک سیب نبود که نظریه‌ای متولد شد.

اگه گرانش رو به زبان خیلی ساده بخوام بگم، میشه فرمول‌بندی نیوتون از حرکات سیاره‌ها. قبل‌تر از نیوتون فردی به نام کپلر سه قانون رو در مورد حرکات سیاره‌ها پیدا کرده بود.کپلر معتقد بود که سیاره‌ها دارن در مدارهایی بیضوی به دور خورشید میچرخند که خورشید در یکی از کانون‌های بیضی قرار گرفته.. زمانی که سیاره به خورشید نزدیکتره با سرعت بیشتری حرکت میکنه نسبت به زمانی که از خورشید دورتره و رابطه ی بین فاصله سیارات از خورشید و پریود حرکتشون هم به دست آورده بود.

بعدتر از کپلر، نیوتون حرکات سیارات رو با صورت بندی گرانش ارائه کرد. نیوتون میگفت گرانش یک نیروی بلندبرده و بین اجرام مختلف برقراره. اگر دو تا جرم مختلف به نحوی بتونن همدیگه رو مشاهده کنن،شروع میکنن به جذب کردن همدیگه. شدت نیرویی هم که حس میکنن متناسب با حاصل ضرب جرمشون تقسیم بر مجذور فاصله دو تا جرم از همدیگه است.

این تا اوایل قرن نوزده بهترین تصویر ما از جهان بوده. اینکه اجرام به شکلی پراکنده‌اند در جهان و طبق گرانش نیوتونی رفتار میکنن. اما از اونجایی که علم همواره در حال تحوله و تصویر ما از جهان ثابت نمی‌مونه، شواهدی پیدا شدن که باعث شد دانشمندان درباره ی این نظریه به تردید بیفتند.اوایل قرن نوزدهم اینشتین با ارائه نظریه نسبیت عام تصویر جدیدی از جهان رو ارائه کرد.در این نظریه گرانش نه یک نیرو که یک ویژگی از فضا- زمان درنظر گرفته میشه.تغییرات در فضا-زمان هم به دلیل پراکندگی اجرام در فضا به وجود میاد.یک مثال آشنا از این اجرام میتونه سیاهچاله ها باشند. سیاهچاله ها در واقع بخشی از فضا زمان هستند که حتی نور هم امکان گریختن از افق رویداد سیاهچاله ها رو نداره. معادله‌ی میدان در نسبیت عام با رابطه‌ی زیر نشون داده میشه.

معادله ی میدان اینشتین

سمت چپ این معادله تانسور انیشتین رو میبینید. این تانسور درواقع حامی تمام اطلاعات هندسه‌ی فضا- زمان هست.سمت راست معادله هم تانسور انرژی- تکانه‌ رو میبینید. که درواقع حاوی تمام اطلاعات یک جرم گرانشی یا بهتر بگم یک ماده است.این جرم گرانشی میتونه زمین باشه، ستاره نوترونی باشه، یا حتی یک سیال باشه.

نسبیت عام موفقیت‌های چشم‌گیری تا به امروز داشته. پیش‍بینی ام‍واج گرانشی، توصیف سیاهچاله‌ها، سفر در زمان و… همگی از دستاوردهای نسبیت عام هستند.اما نسبیت عام در اواسط قرن بیستم و بعدتر با چالش‌های جدی مواجه شد. همین اتفاق باعث شد که دریچه‌ی جدیدی به سوی گرانش باز بشه و نظریات جدید گرانشی متولد بشن.

اینشتین وقتی معادله‌ی میدان گرانشی در نسبیت عام رو نوشت با یک سوال مواجه شد. چرا جهان تحت گرانش خودش فرو نمیریزه؟ نیوتون برمبنای بی‌نهایت بودن و همسانگردی جهان مطمئن بود که جهان تحت گرانش خودش فرو نمیریزه. نیوتون بر مبنای این فرضیات معتقد بود که هر نقطه از جهان نیروی برابری رو حس میکنه، بنابراین جهان هرگز تحت گرانش فرونمیریزه. انیشتین برای رفع این مسئله جمله‌ای رو دستی وارد معادلاتش می‌کنه. این جمله به صورت یک نیروی دافعه‌ی کیهانی، که به عنوان ثابت کیهان‌شناسی معرفی شده، وارد این معادلات میشه. جالبه بدونید اینشتین بعدها از این کارش به عنوان یک اشتباه بزرگ یاد میکنه.

بعد از وارد شدن جمله ی ثابت کیهان شناسی معادله‌ی میدان اینشتین به فرم زیر در میاد.

$$G_{\mu \nu}+ \Lambda g_{\mu \nu}=T_{\mu\nu}$$

با فرض عدم وجود ماده، یعنی در حالتی که مقدار تانسور انرژی- تکانه در این معادله صفر باشه، میتونیم به جمله‌ی ثابت کیهان‌شناسی انرژی خلا رو نسبت بدیم. در این حالت لمبدا رو معادل چگالی انرژی خلا میدونیم.

اما مشکلی که تا به امروز هنوز حل نشده چی بود؟

ما باید بدونیم مقدار این ثابت کیهان شناسی چقدره و از چه مرتبه‌ایه. نظریه‌ی میدان‌های کوانتومی مقداری رو که برای انرژی خلا پیش‌بینی می‌کنه بسیار بسیار بیشتر از عددی است که از رصدها بدست میاد. چیزی در حدود شصت تا صد و بیست مرتبه‌ی بزرگی بزرگتر. همین اختلاف مقدار در نظریه و رصد باعث شد نظریات جدید گرانشی‌ای متولد بشن تا شاید این مشکل رو حل کنند.

مشکل بعدی‌ای که نسبیت عام نتونست از پسش بربیاد مسئله‌ی ماده تاریک بود. اگه بخوام مختصرا بگم ماجرای ماده تاریک از کجا جدی شد، باید برگردیم به رصدهایی که انجام شده و مهم‌ترین شاهد حضور ماده تاریک نمودارهای سرعت چرخش ستاره‌ها و کهکشان‌ها بودند.ما از گرانش نیوتونی میدونیم که سرعت حرکت دایره‌ای یک ستاره از رابطه‌ی زیر بدست میاد.

معادله سرعت چرخش کهکشان‌ها

در این رابطه G ثابت جهانی گرانش، M جرم محصور و r فاصله شعاعی است. برای فواصل بیشتر از دیسک کهکشانی قانون گاوس بیان می‌کند که با فرض اینکه تمام جرم در مرکز محصور شده در فواصل دور مقدار جرم ثابته و سرعت باید با r-1/2  کاهش پیداکنه. اما آن چیزی که رصدها نشون میده چنین نیست. رصد ها میگه از فاصله ای به بعد سرعت حرکت به مقدار ثابتی میل میکنه. انگار که برخلاف اون چیزی که از قانون گاوس میدونیم، جرم اینجا متغیره و داره با فاصله تغییر میکنه. در واقع  تغییرات جرم متناسب با تغییرات فاصله است. این جرم اضافی از کجا میاد؟ به نظر میاد این وسط ماده‌ای فراتر از ماده‌ی مرئی وجود داره که بهش میخوایم بگیم ماده‌ی تاریک. ماده‌ی مرموزی که خیلی خوب نمیشناسیمش. وجود داره ولی مشاهده نمیکنیمش. برهمکنش نمیکنه و هرجایی خودش رو نشون نمیده، اما این وسط داره تو معادلاتمون و در کیهان‌شناسی نقش مهمی بازی میکنه.

نمودار سرعت چرخش کهکشان‌ها

نظریات گرانشیِ بعد از نسبیت عام  تلاش هایی برای توصیف ماده تاریک هم داشته اند. البته عده‌ای از فیزیکدانان انرژی‌های بالا معتقدند که ماده تاریک واقعا به صورت ذراتی وجود داره. و تلاش‌های زیادی چه از بابت نظری و چه عملی برای توصیف و آشکارسازی ذرات ماده تاریک کرده‌اند.

نظریات جدید گرانشی که عمدتا ازشون به عنوان گرانش تعمیم یافته یاد میشه، اضافه کردن درجات آزادی به نظریه‌ی نسبیت عام هست. در واقع ماجرا از این قراره که فیزیکدانان تلاش میکنن با اضافه کردن درجات آزادی به کنش نسبیت عام راهی پیدا کنند که بتونن سوالاتی که نسبیت عام نمیتونه بهشون پاسخ بده رو پاسخ بدن. این درجات آزادی در ساده‌ترین حالت میتونه اضافه کردن یک میدان اسکالر باشه. یا عده‌ای هم دوست دارن بردار، تانسور یا میدان‌های با رنک بالاتر اضافه کنند به این کنش. هر مدلی از گرانش که ساخته میشه باید تست‌پذیر باشه. یعنی نتایجی که پیش‌بینی میکنه با نتایج آزمایش و رصد سازگار باشه. و اساسا قابلیت در معرض آزمایش قرارگرفتن رو داشته باشه.

از دل این تلاش‌ها مدل‌های زیادی برای توصیف جهان ساخته شده اند، که اینجا مختصرا اشاره میکنم و در پست‌های بعدی بهشون می‌پردازم.نظریه‌های اسکالر-تانسور، دینامیک تعمیم یافته نیوتونی، نظریه‌ی انیشتین- اِتِر، نظریه‌های بایمتریک، نظریه‌های f(R )، گرانش غیر موضعی و گرانش ابعاد بالا مشهورترین نظریه‌های گرانشی اند.

سرنوشت نظریات گرانشی به کجا رسیده؟

هنوز فیزیکدانان در حال تلاش‌اند تا بتونن برای سوالاتی که مطرح شده نظریه‌ای بسازند که پاسخ سوالاتشان رو بده. برای محقق شدن این امر نیاز به ایده‌های بهتر و داده‌های رصدی و آزمایشگاهی بیشتر دارن.

پی نوشت:

  1. برای تعریف  تانسور به این آدرس سر بزنید.
  2. برای اینکه مختصری درباره‌ی درجه‌ی آزادی در فیزیک بدونید به این آدرس مراجعه کنید. البته درجه‌ی آزادی در متن بالا کمی متفاوت از چیزیه که در متن پیوست شده مشاهده میکنید.

کیهان‌شناسی نوین

در این مقاله سعی شده است تا با مروری کوتاه بر سیر تاریخی کیهان‌شناسی نوین، گوشه‌ای از تلاش‌های کیهان شناسان و فیزیکدانان، برای ارایه‌ی توصیفی از تحول کیهان، نمایش داده شود.

به یاد آنان که راه را هموار ساختند…

آلبرت آینشتین – نگاره از ویکی‌پدیا

در سال ۱۹۱۵ میلادی، آلبرت انیشتین با ارایه نظریه‌ی نسبیت عام، فصلی تازه در علم کیهان‌شناسی رقم زد و در واقع کیهان‌شناسی مدرن را پایه‌ریزی نمود. در آن زمان انیشتین بر این باور بود که عمر کیهان بی‌نهایت است و جهان در طول زمان تغییری نمی‌کند. این درحالی است که جواب‌های معادلات نسبیت عام، جهانی را توصیف می‌کردند که در حال تحول بود. بدین ترتیب انیشتین در مقاله‌‌اش در سال ۱۹۱۷ میلادی، برای توصیف جهان ایستای خود، با فرض برقراری اصل کیهان‌شناسی، عددی ثابت به نام «ثابت کیهان‌شناسی» را در معادلات خود وارد کرد تا این اثر را خنثی کند. طبق اصل کیهان‌شناسی، جهان در مقیاس‌های به‌اندازه کافی بزرگ، همگن و همسانگرد (در همه جهات یکسان) است. البته بعدها با کشف انبساط کیهان، انیشتین اضافه کردن این ثابت در معادلاتش را بزرگترین اشتباهش خواند.

در همان سال، ویلیام دو سیتر جواب دیگری از معادلات را برای جهانی با فضای غیر تخت و خالی از ماده اما شامل ثابت کیهان‌شناسی، ارایه داد. اگرچه ممکن است این مدل غیر واقعی و بی‌اهمیت به‌نظر بیاید، اما جالب است بدانید که امروزه این مدل در نظریه تورم که مربوط به کیهان آغازین است، نقشی اساسی ایفا می‌کند. در مدل دوسیتر جهان به‌صورت نمایی منبسط می شود.

چگونگی انتقال به سرخ و آبی بسته به (به‌ترتیب) دور یا نزدیک شدن منبع. نگاره از ویکی‌پدیا

الکساندر فریدمان (۱۸۸۸-۱۹۲۵)، ریاضیدان و فیزیکدان روسی، در سال ۱۹۲۲ میلادی، مدل دیگری ارایه داد که در واقع می‌توان آن را حد وسطی از مدل انیشتین و مدل دوسیتر دانست. اگرچه این مدل در آن زمان چندان مورد اقبال واقع نشد، اما پنج سال بعد در حالی‌ که فریدمان از دنیا رفته بود، این جواب ها توسط ژرژ لومتر، کشیش و فیزیکدان بلژیکی، بطور مستقل به‌دست آمدند. وی تلاش کرد تا پیش‌بینی‌های این مدل مبنی بر انبساط کیهان را با نتایج رصدی که به تازگی انجام گرفته بود، مرتبط سازد. این مشاهدات حاکی از آن بود که در طیف کهکشان‌های دوردست، اثری موسوم به «انتقال به سرخ» دیده می‌شود که می‌توان آن‌ را در نتیجه‌ی دور شدن کهکشان‌ها و در واقع انبساط کیهان دانست. البته فردی به نام فریتس تسوئیکی نظر دیگری داشت. وی مدلی موسوم به «نور خسته» را پیشنهاد داد که در آن ادعا می‌شد که نور به دلیل برهم‌کنش با موادی که بر سر راهش هستند، مقداری از انرژی خود را از دست می‌دهد و طول موجش افزایش می‌یابد. بنابراین طیف کهکشان‌های دور دست به سمت طول موج‌های بلندتر منتقل می‌شود. امروزه می‌دانیم که این مدل با داده های رصدی مغایرت داشته و فاقد اعتبار است.

در سال ۱۹۳۱ لومتر مقاله‌ای منتشر کرد که در آن ادعا شده بود که در مدل فریدمان، کیهان باید از یک حالت اولیه تکامل پیدا کرده باشد که شامل مقدار بسیار زیادی از پروتون‌ها، الکترون‌ها و ذرات آلفا بوده است که همگی با چگالی از مرتبه‌ی هسته‌ی اتم در کنار یکدیگر قرار داشته‌اند. وی این حالت را «اتم قدیم: Primaeval Atom» نامید. لومتر را می‌توان در واقع پدر نظریه مه‌بانگ دانست. عبارت «مه‌بانگ» را اولین بار فرد هویل در سال ۱۹۴۹ میلادی، هنگامی‌که در یک برنامه‌ی رادیویی بی‌بی‌سی در مورد این مدل صحبت می‌کرد، به حالت طعنه آمیزی بکار برد. اما این تعبیر خیلی زود رایج شده و مورد استفاده قرار گرفت.

گیرنده‌ای که پنزیاس و ویلسون با آن تابش زمینه کیهانی را کشف کردند. نگاره از ویکی‌پدیا

یکی از مباحث داغی که در سال های ۱۹۴۰ میلادی وجود داشت، موضوع منشأ عناصر شیمیایی بود. در سال ۱۹۴۶ جرج گاموف، فیزیکدان هسته‌ای، با الگوگیری از نظرات لومتر مقاله‌ای منتشر کرد مبنی بر این‌که فازهای اولیه‌ی مدل فریدمان می‌توانند محتمل‌ترین مکان برای هسته‌سازی عناصر شیمیایی باشند. گاموف ادعا کرد که اگر در مدل فریدمان به عقب برگردیم می‌توانیم به نقطه‌ای به اندازه‌ی کافی چگال و پر انرژی برسیم که در آن فرآیندهایی غیر تعادلی مربوط به هسته سازی امکان‌پذیر باشند. در همان سال رالف آلفر،‌ دانشجوی گاموف، نیز به او پیوست تا روی محصولات ناشی از این هسته‌سازی کار کند. دو سال بعد گاموف و آلفر به همراه هانس بیته، مقاله‌ای منتشر کردند و در آن به جزییات موضوع پرداختند. اهمیت این مقاله بر این بود که نشان داد اگر عناصر طبیعی منشأیی کیهانی داشته باشند، نیاز به فازی بسیار داغ و چگال در کیهان اولیه ضروری خواهد بود. در همان سال آلفر و رابرت هرمان محاسبات را دقیق‌تر کرده و این بار تحولات کیهان اولیه‌‌ای که در حال انبساط بود هم در نظر گرفتند و به نتیجه‌ای جالب و مهم رسیدند؛ بقایای سرد شده‌ی فازهای داغ اولیه‌، هنوز هم باید در کیهان امروزی وجود داشته باشند. آنها دمای این بقایا را در حدود پنج کلوین پیش‌بینی کردند. امروزه این بقایا با عنوان «تابش پس زمینه کیهانی» شناخته می‌شوند.

طبق محاسباتی که توسط آلفر و هرمان انجام شد، در دوران هسته‌سازی حدود ۲۵٪ از اتم‌های هیدروژن اولیه به اتم هلیوم تبدیل شده و تنها مقدار بسیار ناچیزی (حدود ۰/۰۰۰۰۱٪ )، تبدیل به اتم‌های عناصر سنگین‌تر شدند. این درحالی بود که مشاهدات نشان می‌دادند که مقدار عناصر سنگین در جهان، خیلی بیشتر از مقدار پیش بینی شده است. بدین ترتیب نظریه مهبانگ با مشکل بزرگی برای توجیه میزان اتم‌های سنگین روبرو بود. (البته چند سال بعد معلوم شد که عناصر سنگینی مانند کربن، اکسیژن و آهن، در دل ستارگان پرجرم و انفجارهای ابرنواختری تولید می‌شوند.) این موضوع موجب شد تا در سال ۱۹۴۸ میلادی، فرد هویل، توماس گلد و هرمان بوندی، «نظریه حالت پایدار» را به‌عنوان جایگزینی برای مدل مهبانگ ارائه دهند. در این نظریه ادعا شده است که جهان، هم در فضا و هم در زمان، همگن و همسانگرد است.(اصل کیهان‌شناسی کامل) در واقع جهان، همواره به همین شکل و شمایل امروزی وجود داشته است.

«به یک معنا، شاید به‌توان گفت که نظریه حالت پایدار در شبی شروع شد که بوندی، گلد و من، مشتری یکی از سینماها در کمبریج شدیم. اگر درست خاطرم باشد، اسم فیلم «مرگ تاریکی» بود؛ فیلم دنباله‌ای از چهار داستان از ارواح بود که همان‌طور که چند تن از شخصیت‌ها در فیلم می‌گفتند، به نظر می‌رسید که ربطی میانشان نباشد اما با یک ویژگی جالب که انتهای داستان چهارم به طرز غیرمنتظره‌ای به ابتدای داستان اول مربوط بود. در نتیجه به‌موجب آن، پتانسیل برای یک چرخه‌ی بی پایان وجود داشت. وقتی آن شب سه نفرمان به اتاق‌های بوندی در دانشگاه ترینیتی برگشتیم، ناگهان گلد گفت: چه می‌شود اگر عالم نیز شبیه این باشد!؟ شاید این‌طور تصور شود که حالت‌های بدون تغییر، لزوما ساکن و راکد هستند. کاری که فیلم داستان ارواح برای ما انجام داد این بود که خیلی سریع این تصور اشتباه را از هر سه نفرمان برطرف کرد. می‌توان حالت‌های بدون تغییری داشت که پویا باشند. مانند یک رودخانه‌ی آرام در حال جریان. عالم باید پویا باشد؛ چرا که قانون انتقال به سرخ هابل این را اثبات می‌کند… از این‌جا می‌توان به سادگی دریافت که نیاز است که خلق پیوسته‌ی ماده وجود داشته باشد.»

هویل نرخ خلق ماده را یک ذره در سانتی متر مکعب در هر ۳۰۰۰۰۰ سال، به‌دست آورد. برخلاف بوندی و گلد که رهیافتی فلسفی به نظریه حالت پایدار داشتند، هویل فرضیه خود را از دیدگاه نظریه‌ی میدان بنا نهاد و میدانی به نام «میدان سی: C-Field» را برای خلق ماده در نظر گرفت. این نظریه در همان سال نخست توانست نظر بسیاری از ستاره‌شناسان و حتی مردم عامه را به خود جلب کند. نظریه حالت پایدار از آنجایی برای ستاره شناسان دارای اهمیت بود که می‌توانست توضیح جایگزینی از منشأ عناصر ارایه دهد.

این نگاره، نمایشی هنری از انبساط متریک فضاست که در آن فضا (که شامل قسمت‌های فرضی غیرقابل مشاهده جهان هم هست) را در هر لحظه از زمان را می‌توان با برشی قرصی از نمودار نمایش داد. توجه کنید که در سمت چپ شکل می‌توانید انبساط دراماتیک فضا در دوره تورمی را ببینید. نگاره از ویکی‌پدیا

تا مدتی، کیهان‌شناسان به دو گروه که هریک طرف‌دار یکی از نظریه‌های حالت پایدار یا مه‌بانگ بودند، تقسیم شده بودند. تا آنکه شواهد رصدی‌ای مانند «شمارش منابع رادیویی: the Counts of Radio Sources»، بر اعتبار نظریه مهبانگ افزود و سرانجام در سال ۱۹۶۵ میلادی هنگامی‌که آرنو پنزیاس و رابرت ویلسون بر روی امواج رادیویی کار می‌کردند، توانستند به طور کاملا اتفاقی، تابش زمینه کیهانی که از پیش بینی‌های مهم نظریه مه‌بانگ بود را کشف کنند. در واقع این کشف، مهر تأییدی بود بر نظریه مه‌بانگ که موجب شد تا این نظریه به عنوان نظریه‌ای مورد توافق همگان در بیاد.

البته نظریه مهبانگ قادر نبود تا به بعضی از سوالات اساسی مانند مسئله‌ی افق یا مسئله‌ی تخت بودن جهان و یا مسئله تک‌قطبی‌های مغناطیسی پاسخ بدهد. به همین خاطر در سال ۱۹۸۱ میلادی، آلن گوت، با معرفی مدلی موسوم به «مدل تورم» توانست پاسخگوی این سوالات باشد. مدل تورم ادعا میکند که کیهان در بازه‌ی زمانی بین۱۰−۳۶ تا حدود ۱۰−۳۲ثانیه بعد از نقطه‌ی تکینگی اولیه، دستخوش انبساطی با نرخ نمایی شده است! امروزه با استفاده از ابزارهای دقیق رصدی می‌توانیم شواهدی دال بر وجود دوران تورم را به ویژه در تابش زمینه‌ی کیهانی مشاهده کنیم.

پیشرفت های رصدی و همچنین پیشرفت‌هایی که از لحاظ نظری در زمینه رشد ساختارهای بزرگ مقیاس در اواخر قرن بیستم میلادی صورت گرفت، منجر به نتایج زیر شد:

  • اولا احتمالا به‌مقدار نسبتا قابل توجهی ماده‌ی تاریک غیر نسبیتی (ماده‌ی تاریک سرد) وجود دارد.
  • ثانیا باید یک ثابت کیهان‌شناسی غیر صفر (لامبدا) وجود داشته باشد.

سرانجام این نتایج موجب شد تا مدل لامبدا سی‌دی‌ام: ΛCDM Model، در سال ۱۹۹۵، توسط جرمی اوستریکر و پائول استینهاردت پیشنهاد شود. چهار سال بعد، با کشف این‌که جهان به صورت شتاب‌دار در حال انبساط است، این مدل به عنوان مدل پیشرو مورد توجه قرار گرفته و خیلی زود توسط مشاهدات دیگر نیز تأیید شد.

ریچارد فاینمن؛ چهره‌ترین چهره!

اگر از دنبال‌کنندگان سیتپور هستین لابد با فاینمن تا حالا آشنا شدین. ریچارد فاینمن بدون اغراق یکی از بزرگترین فیزیک‌دانان قرن ۲۰ام و یکی از تاثیرگذارترین فیزیک‌دانان کل تاریخه. پیش‌تر از این، در مورد فاینمن نوشته بودم (۱) (۲) (۳) (۴) (۵). طی این چند روز، دوستان ویدیویی از یکی از مصاحبه‌های فاینمن رو برام فرستادن که ازش می‌پرسن آیا هرکسی می‌تونه فاینمن بشه؟ و فاینمن با خونسردی خاصی می‌گه آره! متن مصاحبه از این قراره:

شما از من می‌پرسی که آیا یه آدم معمولی با سخت درس خوندن می‌تونه چیزهایی که من تصور می‌کنم رو تصور کنه؟ البته! من یه آدم معمولی بودم که سخت درس خوندم. هیچ آدم افسانه‌ای وجود نداره! داستان از این قراره که این جور آدما به این جور چیزا علاقمند میشن و همه چیزای مربوط به اون رو یاد می‌گیرن. اونا هم آدم هستن! توانایی خارق‌العاده‌ای برای درک مکانیک کوانتومی یا تصور  امواج الکترومغناطیس به دست نمیاد مگه از راه تمرین و مطالعه و یادگیری و ریاضیات! پس، اگه شما یه آدم معمولی رو در نظر بگیرین که وقت بسیار زیادی رو وقف مطالعه و فکر کردن و ریاضیات و این جور چیزا می‌کنه. اون موقع اون شخص خب یه دانشمند میشه!

احتمالا هر کسی که قدری فیزیک یا ریاضی خونده باشه، با دیدن این ویدیو کمی جا می‌خوره. واقعا مگه میشه مثل فاینمن شد؟ من نمی‌دونم، ولی خود فاینمن میگه میشه ولی ساسکایند میگه نمیشه!

نابغه‌ها دو دسته هستن. دسته اول، اونایی که اگه مدتی وقت بذاری متوجه کارشون می‌شی و با اینکه کارشون  قابل تقدیره، ولی این حس رو پیدا می‌کنی که اگر کس دیگه‌ای هم وقت کافی صرف اون موضوع کرده بود، می‌تونسته اون نتایج رو به دست بیاره. اما دسته دوم، نابغه‌هایی هستن که وقتی آدم کارشون رو دنبال می‌کنه و ایده‌های بکری که به کار بردن رو متوجه میشه، همه‌ش از خودش می‌پرسه، مگه میشه!؟ آخه چه‌طور به ذهنش رسیده این چیزا! چه‌طور یه نفر تونسته توی این سن و سال این مسیر عجیب و غریب رو دیده باشه! آقای کاتس (Mark Kac) توی مقدمه کتاب Enigmas of Chance گفته که فاینمن از اون دسته‌ای هست که حتی دانشمندان تراز اول هم بهش غبطه می‌خورن! آدم‌هایی که نبوغشون جادوییه! با این وجود، این چیزی نیست که فاینمن در مصاحبه گفته! فاینمن معتقده که هر کسی که تلاش کنه می‌تونه فاینمن بشه! راستش گروه باراباشی سال گذشته نشون دادن که موفقیت در مسیر علمی به شانس هم بستگی داره و صدالبته اینکه وقتی شما شانس بیشتری پیدا می‌کنی که همیشه در حال تلاش باشی و پرکار و پویا! به‌هرحال ما نمی‌تونیم انکار کنیم که کار زیاد و خون جگر خوردن بی‌ثمر می‌مونه، همین‌طور که نمی‌تونیم عظمت جناب فاینمن رو انکار کنیم!

چه کسی محبوبه؟ نابغه‌ترین؟!

چیزی که برای من جالبه اینه که چرا بین همه فیزیکدانان رده بالای قرن ۲۰ام، چهره‌هایی مثل آینشتین، فاینمن و هاوکینگ تبدیل به ابرچهره شدند؟! چهر‌ه‌هایی که نه تنها جامعه فیزیک‌دان‌ها اونا رو ستایش می‌کنه بلکه مردم هم اونا رو می‌شناسن، بهشون احترام می‌ذارن و بهشون به عنوان قهرمان/الگو/اسطوره نگاه می‌کنند! راستی، برای اینکه دانشمندی تبدیل به چهره‌ای مردمی بشه فقط به نبوغ سرشار نیاز داره؟

جواب این سوال منفیه! یقینا در قرن گذشته بزرگانی وجود داشتن که از فاینمن یا هاوکینگ بزرگتر بوده باشن. بزرگانی که حتی دانشجوهای لیسانس فیزیک هم ممکنه با شنیدن اسمشون احساس آشنایی پیدا نکنن! مثلا همین جناب شویینگر که به همراه فاینمن در سال ۱۹۶۵ نوبل QED رو گرفته یا عالی‌مقام دیراک! سوال اینجاست که چرا این فاینمنه که ورد زبان‌هاست و نه جان ویلر (استاد فاینمن)؟! بدون تردید جان ویلر قله‌ای استوار در فیزیک به حساب میاد. (شاید از کم‌ترین دستاورهای جان ویلر این باشه که دو تا از دانشجوهاش نوبلیست شدن: فاینمن در سال ۱۹۶۵ و کیپ ثرون در ۲۰۱۷.) یا مثلا اکثر مردم آینشتین رو به عنوان نمادی از نبوغ میشناسن ولی با ماکس پلانک یا هنری پوانکاره عزیز هیچ آشنایی ندارن چه برسه به کسانی مثل چاندراسخار یا لینوس پاولینگ! یا مثلا آقای بیل‌ گیتس، فاینمن را به خوبی می‌شناسه ولی لابد اسمی از دیوید بهم هیچ موقع نشنیده! پس ماجرا چیه؟!

فاینمن در حال گفتگو با TA خود پس از کلاس درس. April 29, 1963. حق نشر متعلق به کلتک: feynmanlectures.caltech.edu

 

فاینمن، روایتگر بزرگ علم!

چیزی که فاینمن رو تبدیل به یک نماد و ابرچهره کرده فقط نبوغ سرشار و بی‌نظیرش نیست. به قول فریمن دایسون، برای اینکه یک دانشمند بتونه تبدیل به یک ابرچهره یا نماد برای مردم بشه، علاوه بر نبوغ زیاد، باید توانایی ارتباط با مردم رو داشته باشه. باید بتونه با مردم حرف بزنه و به زبون خودشون بهشون اتفاقات دنیای علم رو توضیح بده. مردم به امثال آینشتین یا فاینمن با روی خوش نگاه می‌کنند چون مثل خودشون هستن! فاینمن یک بذله‌گو تمام عیار بود، یک دلقک حتی! مردم کسایی که خشک و عصا قورت داده هستن رو دوست ندارن! فاینمن همون‌قدر که دانشمند تراز اولی بود، موقع تدریس یک شومن فوق‌العاده هم بود! همون قدر که دقت علمی در گفتگوهاش داشت، همون‌قدر هم در روایتگری ید بیضایی داشت! مردم قصه‌گوها رو دوست دارن و به قصه‌ها گوش می‌دن. به نظر من، فاینمن بزرگترین روایتگر علم در دو قرن گذشته است!

فاینمن، انسان بود، درد رو می‌فهمید!

فاینمن فرد عاقل و خرمندی بود! فاینمن در مورد مسائل زندگی حرف برای گفتن داشت. حرف‌های درست و حسابی! فاینمن زندگی رو می‌شناخت و سختی‌های زیادی رو طی زندگی تحمل کرده بود. اگر کتاب «حتما شوخی می‌کنید آقای فاینمن!» رو خونده باشین، در جریان بیماری Arline همسر فاینمن هستین. فاینمن، علی‌رغم مشغله‌های کاریش به خاطر پروژه منهتن (پروژه ساخت بمب هسته‌ای)، با تمام وجود از همسرش پرستاری کرد و اجازه نداد که آب توی دلش تکون بخوره! فاینمن همسر جوانش رو خیلی زود از دست داد و این داغ هیچ موقع از دل و ذهن فاینمن بیرون نرفت. ما فاینمن رو به عنوان یک معلم بزرگ فیزیک می‌شناسیم. لکچرنوت‌های فاینمن پرآوازه‌ترین کتاب‌هایی هستن که برای یادگیری فیزیک توی بازار میشه پیدا کرد و از صدقه سر این مجموعه فوق‌العاده ما بعد اجتماعی فاینمن رو به خوبی می‌شناسیم. در مورد بعدی فردی فاینمن، چندسال پیش، مجوعه‌ای از نامه‌های فاینمن منشتر شد به اسم «Perfectly Reasonable Deviations: The Letters of Richard P. Feynman» که جلوه‌های جدیدی از زندگی فاینمن رو به ما نشون میده.

فاینمن باتمام وجود از همسرش پرستاری می‌کرد. درست زمانی که مشغول پروژه بمب اتم بود!

پیشنهاد می‌کنم نامه‌ای که فاینمن پس از مرگ همسرش نوشته رو حتما بخونید! فریمن دایسون میگه پشت تمام شادمانی‌های فاینمن، یک تراژدی نشسته بوده و با تمام شور و نشاطی که مردم از فاینمن سراغ دارن، اون خیلی خوب می‌دونسته که زندگی کوتاهه! فاینمن در سال‌های آخر عمرش از دو سرطان نادر رنج می‌برد: لیپوسارکما و بیماری والندشتروم. بعد از یک عمل جراحی کوتاه برای درمان بیماری والندشتروم، فاینمن در ۱۵ فوریه ۱۹۸۸ تو سن ۶۹ سالگی در مرکز پزشکی یو سی ال ای در گذشت. آخرین کلماتش این بود: «از این که دو بار بمیرم متنفرم، خیلی کسل‌کننده است.» 🙁

فاینمن «انسان» بود، درد رو حس کرده بود و برای فرزندان، دانشجوها و حتی همکارانش یک «راهنمای دلسوز» بود. مجموعه نامه‌های منتشر شده فاینمن، گواه دغدغه‌های فاینمن و احساسش نسبت به مردم اطرافشه. فاینمن به عنوان یک نوبلیست، با تمام مشغله‌های آکادمیک به نامه‌های مردم از سراسر جهان با حوصله جواب می‌داده، برای مردم وقت می‌ذاشته و سعی می‌کرده راهنماییشون کنه! راستش، فاینمن عجیب منو یاد این عبارت از اسرارالتوحید ابوسعید ابوالخیر می‌ندازه: «مرد آن بود که در میان خلق بنشیند و برخیزد و بخسبد و بخورد و در میان بازار در میان خلق ستد و داد کند و با خلق بیامیزد و یک لحظه، به دل، از خدای غافل نباشد.»

حواسمون باشه:

  • در انتها به نظرم باید به این نکته اشاره کنم که فراموش نکنیم که ما در علم به دنبال چهره‌ها نیستیم! علم مستقل از عالمه! افراد مهم نیستن، بلکه حرف مردمه که مهمه. درگیر اشخاص نشیم و از دانشمندا بت نسازیم! نظر ساسکیند در مورد فاینمن رو بشنویم، نگاه کنیم که پس از مرگ فاینمن، شووینگر در رثای اون چی گفت! همین‌طور به ماری‌ گل-مان هم گوش کنیم که میگه: «فاینمن بخشی از وقتش رو صرف پرداختن به قصه‌های می‌کرد که خودش قهرمان اون‌ها بود!». نگاه کنید به: Feynman100
  • یه نکته جالب دیگه اینه که مشهور بودن لزوما معنای مثبتی نداره! ارنست آیزینگ معروف‌ترین دانشمند در فیزیک آماری به حساب میاد ولی این به این معنا نیست که بزرگترین فرد در این زمینه هم باشه! راستی زیاد دل‌خوش به اسم قضیه‌ها و قانون‌ها هم نباشیم! بخش زیادی از اکتشافات، قضیه‌ها، روابط و قوانین به اسم کسانی معروف شدن که هیچ ربطی به اون قضیه یا قانون ندارن. به‌هرحال روزگار زیاد مطابق میل و اراده ما هم پیش نمیره!
  • و این توییت:

این نوشته رو تقدیم می‌کنم به علی فرنود به خاطر نوشته‌های فوق‌العاده‌ش.

راهی که آمدیم؛ مروری کوتاه بر دستاوردها و چالش‌های فیزیک نظری

در گوشه‌ای از جهان هستی

در قلب توده‌ بزرگی از ماده‌ی تاریک، در نقطه‌ای از کهکشان مارپیچی بزرگمان، بر روی سیاره‌ی خارق‌العاده‌ای که به دور خورشید با شکوهمان می‌چرخد، در ادامه‌ی زنجیره‌ای که هنوز تنها اثری از حیات زنده در کیهانمان است، ما نیز شروع به زندگی کردیم. به عنوان گونه‌ای با قدرت تفکر، همیشه به دنبال زبانی برای برقراری ارتباط با محیط اطرافمان بوده و هستیم. گاه با هدف رفع نیاز، گاه برای رفع حس کنجکاوی سیری ناپذیرمان و حتی گاهی در اثر ترس! اما هدف هرچه بود و هرچه هست، امروز درجای عجیبی از تاریخ علم ایستاده‌ایم و با غرور به جهانی نگاه می‌کنیم که نه آن‌طور که ما دلمان می‌خواهد، بلکه آن گونه که واقعا هست، در برابر ما ایستاده است.

شما اینجا هستید!

ما همیشه می‌خواستیم با طبیعتمان سخن بگوییم، و در طول تاریخ، فیزیک راهی بود که برای این هدف انتخاب کردیم. فیزیک زبان مشترک ما و طبیعت شد. ما مشاهده می‌کردیم، بعدها یاد گرفتیم ثبت کنیم، بر پایه‌ی مشاهداتمان فرضیه سازی کردیم و جلو رفتیم. زمینمان را تخت تصور میکردیم، هر کدام از سیارات و ستاره ها را خدایی می‌پنداشتیم که باید نیایش کنیم، وگرنه بر ما عذاب می‌فرستند. در ذهنمان خدایان ناشناخته‌ای ساختیم که شب و روز را پدید می‌آوردند. خدایانی که غروب خورشید را می‌خوردند و صبح باز او را به دنیا می‌آوردند. خدایانی که صبح از شرق برمی‌خاستند، در طول روز در آسمان سیر می‌کردند و غروب مانند پیرمردان در بستر می‌مردند. رعد و برق، خشم خدایان بود و زلزله خشم مادرمان زمین.

فرضیه ساختیم، خیالبافی کردیم و جلو آمدیم. سفر کردیم، اختراع کردیم، تا آنجا که زمین و آسمان را هر روز بهتر و بهتر شناختیم. فرضیاتمان به مرور حقیقیتر میشدند، از محیطمان به زیباترین وجه استفاده می‌کردیم، ویژگیهایش را میدانستیم، دارو می‌ساختیم، ظروف زیبا، وسایل نقلیه، ساختمان‌های باشکوه ، اما هنوز پیوند عمیقی برقرار نبود. با طبیعتمان به زیبایی زندگی میکردیم اما زبانش را نمیدانستیم. همیشه نگاهمان به آسمان هم معطوف بود. آسمان پر رمز و راز را می‌دیدیم. ستارگانی را که هر شبمان را زیبا می‌ساختند، در صورت‌های فلکی دسته بندی کردیم. علم اخترشناسی را به جود آوردیم و هر شب آسمان را رصد میکردیم. همه چیز را میدیدیم، اما هنوز علت‌ها ناشناخته بود.

نظریه  زمین‌مرکزی بطلمیوس

بطلمیوس که بین سالهای ۹۰ تا ۱۶۸ میلادی زندگی میکرد، معتقد بود زمین در مرکز جهان قرار دارد، و ماه و خورشید و سایر سیارات، به دور آن میچرخند. در این نظریه، سیارات مداری نداشتند و انگار بر روی صفحه‌ای شیشه‌ای به نام فلک چسبیده بودند و فلک به دور زمین در گردش بود. او معتقد بود که ۸ یا ۹ فلک وجود دارد و بر روی فلک آخر، ستاره‌ها چسبیده‌اند.

یک نقاشی قدیمی برآمده از طرز تفکر بطلمیوسی (زمین‌مرکزی) – نگاره از ویکی‌پدیا

پس از این فلک، که به آن فلک الافلاک می‌گفتند، خداوند و فرشتگان زندگی میکردند. این نظریه که به آن زمین مرکزی میگویند شاید یکی از نخستین نظریات جامع و منسجم ما درباره ی کیهانمان بود. این باور نزد ما پذیرفته شده بود. ما در مرکز جهان هستی، بر روی سیاره‌ی زیبایمان نشسته بودیم و همه به دور ما می‌گشتند. کلیسا نیز این فرضیه را بشدت تبلیغ می‌کرد. خیالی خوش و پرغرور اما ناپایدار. تا بالاخره در تاریخمان گالیله پیدا شد. او بود که گفت نه تنها ما مرکز جهان نیستیم، بلکه ما و چند سیاره‌ی دیگر همه و همه به دور خورشید زیبایمان میگردیم. او نگاه ما را به طبیعت و به ویژه علم مکانیک دگرگون کرد، و در یک کلام، او نخستین پیوند میان طبیعت و ریاضیات را در قلب علم حرکت شناسی نشان داد. وقتی به او فکر می‌کنم، و به جهانی که پیش از او می‌شناختیم، تصمیم و کار بزرگش بسیار ترسناک به نظرم میرسد. تصور کنید در خانه‌ای نشسته‌ایم، دیوارهایش را با رنگ‌های بسیار زیبا نقاشی کرده‌ایم و تصور می‌کنیم تمام حقیقت، هرآن چیزی است که در نقاشی‌هایمان کشیده‌ایم. ناگهان مردی از راه می‌رسد، دیوارها را خراب می‌کند،نقاشی‌ها را می‌سوزاند، ما را وسط تاریکی بی‌انتهایی رهایمان می‌کند و تنها مشعلی به دستمان می‌دهد. او نم‌یداند نتیجه‌ی جستجویمان چه خواهد بود، اما باور دارد حقیقت بسیار زیباتر و موثرتر از تمام نقاشیهایمان بر در و دیوار خانهمان است. او به درستی و زیبایی حقیقت باور دارد. ما این مشعل را گرفتیم و جلو آمدیم.

نیوتون و ادامه‌ی راه

مفهوم گرانش را فهمیدیم. حرکت سیارات را توجیه کردیم. مهندسی نوینی بر پایه‌ی معادلاتش بنا کردیم. علم مهندسی هر روز زندگی را ساده‌تر میکرد. اما سوالات ما پایانی نداشت. مطالعه بر روی نور از زمان نیوتون جدی‌تر دنبال می‌شد. تلسکوپ گالیله که یکی از دستاوردهایش کشف چند قمر از اقمار مشتری بود، به وسیله‌ی نیوتون اصلاح شد و کار رصد آسمان را اندکی بهبود بخشید. همچنین مطالعه‌ی ما بر روی الکتریسته و مغناطیس روز به روز بیشتر می‌شد و کسانی ماند لنز، فارادی، آمپر و دیگران ماهیت بار الکتریکی را معرفی کردند. سرانجام دوران طلایی فیزیک فرا رسید. در اواخر قرن نوزدهم، تامسون مدل اتمی‌اش را ارائه کرد. رادرفورد اولین بار مفهوم هسته را معرفی کرد. پروتون‌ها و نوترون‌ها شناخته شدند و سرانجام مدل سیاره‌ای توسط نیلز بور ارائه شد. مدلی که اگر درست بود بنابر نظریه‌ی الکترومغناطیس، به ناپایداری اتمها و نابودی اتم منجر میشد. در این زمان بشر به آزمایش‌هایی دست می‌زد که یکی پس از دیگری ناتوانی فیزیک نیوتونی را در توضیح مسائلی روشن‌تر می‌ساخت. اینطور به نظر میرسید که باز راهمان را گم کردهایم.

اما نه!

ما میدانستیم ماشینهایمان، هواپیماها و تمام علم ساختمان، بر پایه‌ی فیزیک نیوتونی دقیق و زیبا کار می‌کنند و جلو می‌روند. اینجا بود که به اصل بسیار زیبای همخوانی رسیدیم. اصلی که سنگ بنا و شرط اساسی تمام نظریاتمان شد:

اگر نظریه ی جامعی ارائه می‌شود، این نظریه باید در شرایط خاصی که مکانیک نیوتونی برقرار است، معادلات نیوتون را بدست دهد.

برای مثال، اگر به دنبال نظریه‌ی جامعی هستیم که قلب اتم را نیز برایمان توضیح دهد، چنانچه در معادلاتمان باز از اتم به اجسام عادی و سرعت‌های معمولی رسیدیم، باز معادلات باید همان معادلات نیوتون شوند. و این اصل چراغ راهمان شد. تابش جسم سیاه، اثر فوتوالکتریک، اثر کامپتون و … هر یک بیش از پیش ما را به سمت نظریه‌ی شگفت‌انگیز کوانتوم سوق داد.

دوگانگی موج و ذره یکی از مفاهیم عجیب مکانیک کوانتومی- نگاره از ویکی‌پدیا

با مکانیک نیوتونی و درک ماهیت موجی-ذره‌ای در ابعاد کوانتومی، هایزنبرگ ، شرودینگر و دیراک زبانی ساختند بسیار مدرن که ما را به اعماق ماده راه داد. در اوایل قرن بیستم بود که اینیشتین با تئوری زیبای نسبیت خاصش از راه رسید. نظریه‌ای که در پاسخ به مسئله‌ی یکسان بودن سرعت نور نسبت به هر ناظر لخت با هر سرعتی نوشته شده بود. این نظریه نشان داد که در سرعت‌های بالا،  زمان هم از نگاه ناظرهای مختلف متفاوت است و به این صورت، مفاهیم قدیمی فضا و زمان به هم گره خوردند و مفهومی بنیادیتر به نام فضا-زمان شکل گرفت. اما زیبایی بی‌نظیر معادلات نسبیت خاص درآن بود که اگر سرعت متحرک نسبت به سرعت نور کم میبود -مثلا در حد سرعت حرکت ما و وسایل نقلیه‌مان- معادلات باز به همان معادلات آشنای نیوتون میرسید. پس ظاهرا ما همه چیز را می‌دانستیم. در قلب ماده مکانیک کوانتوم جواب سوالاتمان را می‌داد. برایمان هسته و اتم را توضیح داد. اتم شکافتیم. انرژی گرفتیم و با توحشی که هنوز در وجودمان تمامی ندارد بمب ساختیم. در سرعتهای بالا، معادلات نسبیت حلال مشکلاتمان شد و هنگامی که سرعت کم میشد و ابعاد ماده به ابعاد معمولی میرسید، معادلات نیوتون زندگی روزمره‌مان را پاسخگو بود.

نیروی گرانشی چه؟

آیا گرانش همانگونه که نیوتون تصور کرده بود، شکلی از نیرو بود؟ و این باز آلبرت اینیشتین بزرگ پس از حدودا یک دهه از ارائه‌ی نسبیت خاص، نسبیت عام را مطرح کرد و از گرانش نه به عنوان یک نیرو که به عنوان اثری هندسی نام برد. در واقه آنچه به عنوان نیروی گرانشی می‌شناسیم چیزی نیست جز خمیدگی فضا-زمان در اثر وجود ماده. از دل این تئوری ، سیاهچاله‌ها، کرمچاله‌ها و امواج گرانشی سربرآوردند. ترکیب این نظریه با شواهد رصدی مبنی بر انبساط کیهان، معادلات فریدمان در توصیف کیهان را بدست داد. این معادلات ما را به بیگ بنگ رساندند. جایی که احتمالا آغاز فضا-زمان و در نتیجه کیهان زیبای ماست. سرانجام با اضافه کردن نظریه‌ی تورم و همچنین کشف اثرات ماده‌ی تاریک و انرژِی تاریک، به مدل استاندارد کیهانشناسی رسیدیم. مدلی که کیهانی را شرح می‌دهد که از مه‌بانگ آغاز کرده، ناگهان تورم یافته و سپس ذرات در آن شکل گرفته‌اند. ذرات ماده و ضد ماده و همچنین چیزی به نام ماده‌ی تاریک که البته هنوز هویتش را نمی‌دانیم. ماده بر ضد ماده غلبه کرده و همین موجب شکل‌گیری کهکشان‌های زیبا، سیارات و ستاره‌ها شده است. ماده‌ معمولی که میشناسیم که تنها ۵ درصد از کل جهان را تشکیل داده است. این ماده شامل کوارک‌ها که تشکیل دهنده‌ی نوترون و پروتون‌اند، نوترینوها، آنتی نوترینوها و ذرات دیگر است که همه و همه در مدل استاندارد ذرات بنیادی به زیبایی کنار هم نشسته‌اند.

تاریخچه انبساط جهان

پس از موفقیت‌های مکانیک کوانتومی، مثل هر نظریه‌ی دیگری، معایبش هم آشکار شد و یکی از آن عیب‌ها، ناتوانی مکانیک کوانتومی در حل مسائلی بود که طی آنها ذره خلق میشد. این موارد ما را به سمت نظریه‌ی میدان‌های کوانتومی سوق داد، که ریچارد فاینمن آن را پایه ریزی کرد و رسما دید ما به جهان زیر اتمی تکامل زیبایی یافت. در سالهای اخیر با پیشرفت‌های چشم‌گیر تکنولوژی و علوم مهندسی، بالاخره وجود ذره‌ی هیگز تایید شد. تابش زمینه‌ی کیهانی هر روز مطالعه می‌شود. سال گذشته پیشبینی صد ساله‌ی آلبرت اینیشتین تحقق یافت و امواج گرانشی آشکار شدند. پس این طور به نظر میرسد که هر روز بیشتر از روز قبل با طبیعتمان به زبان مشترکی میرسیم. هر روز بیش از قبل زیبایی ریاضیاتمان، و نظریاتی که می‌نویسیم آشکار می‌شود.

پرسش‌های پیش‌رو

اما هنوز علامت سوال‌های بزرگی در پیش است. ماده‌ی تاریک واقعا چیست؟ انرژی تاریک چیست؟ این دو روی هم رفته ۹۵ درصد از جهان ما را تشکیل می‌دهند و هنوز برایمان ناشناخته‌اند. نظریات جدیدمان تا چه اندازه کارآمدند؟ تئوری ریسمان، نظریه‌ی ابرتقارن، گرانش تعمیم یافته، کیهان شناسی مدرن و … . هر روز بیش از قبل پیشرفت می‌کنیم و به کشف حقیقت نزدیک می‌شویم.‌ اما واضح است که در پی اینچنین تلاشی به قدمت عمر ما بر روی این کره‌ی خاکی، سوالات زیادی حل نشده باقی مانده‌اند و این چالش بزرگی پیش روی زیباترین وجه ریاضیات، یعنی فیزیک نظریست.

مدتی پیش کتابی میخواندم به نام «درباره‌ی معنی زندگی» از ویل دورانت.

اوبث اشاره می کرد که تلاش ما برای یافتن حقیقت، در واقع تمام اعتماد به نفسمان را از بین برد . چرا که زمانی ما مرکز جهان بودیم و همه چیز معطوف به ما بود. اما دانشمندان نشان دادند که ما گونه‌ای ناتوان در گوشه‌ای از این جهانیم و روزی تنها خورشیدی که میشناسیم نابودمان خواهد کرد و مولکول‌های ما تجزیه خواهد شد و آن روز پایان ماست. این جمله و نگاهش اگرچه از دید یک فیلسوف جالب و قابل تامل است، اما من قویا معتقدم حقیقت، بسیار زیباتر از امنیت ساختگی به وسیله‌ی توهم است. حقیقت هرچه هست، به ذات خود زیباست و این زیبایی دوچندان میشود وقتی به زبان ریاضی بیان میگردد. این جادوی فیزیک است.

همانگونه که زمانی فاینمن گفت:

«شاعران گفته‌اند که علم زیبایی ستاره ها را ضایع میکند، چون که آنها را صرفا کره‌هایی از اتم‌ها و مولکول‌های گاز می‌دانند. اما من هم میتوانم ستاره‌ها را در آسمان شب کویر ببینم و شکوه و زیبایی‌شان را حس کنم. می‌توانم این چرخ فلک را با چشم بزرگ تلسکوپ پالومار تماشا کنم و ببینم که ستاره ها دارند از هم‌دیگر، از نقطه ی آغازی که شاید  زمانی سرچشمه‌ی همگی‌شان بوده است دور می‌شوند. جست‌وجو برای فهمیدن این چیزها گمان نمی‌کنم لطمه‌ای به رمز و راز زیبایی این چرخ فلک بزند. راستی شاعران امروزی چرا حرفی از این چیزها نمی‌زنند؟ چه جور مردمانی هستند این شاعران که اگر ژوپیتر خدایی در هیئت انسان باشد چه شعر ها که برایش نمی‌سرایند اما اگر در قالب کره‌ی عظیم چرخانی از متان و آمونیاک باشد سکوت اختیار میکنند؟»

اگر شما هم به دنبال زیبایی‌های جهان بی‌نظیرمان هستید، به دنیای ریاضیات خوش آمدید.