رفتن به نوشته‌ها

برچسب: بازبهنجارش

فرکتال‌ها، قوانین توانی، توزیع‌های دم‌کلفت و پدیده‌های بحرانی

سرخس‌ها گیاهانی هستند که شکلی هندسی خاصی دارند. اگر قسمتی از آن‌ها را جدا کنید، با کمی دوران و بزرگ‌نمایی می‌توانید قسمت دیگری را بازسازی کنید. این ویژگی هندسی فرکتال‌ها است. در مورد هندسه فرکتالی و کاربرد آن در فیزیک نکات جالبی وجود دارد. مثلا به نوشته‌های زیر سر بزنید:

تصویری از یک سرخس به عنوان موجودی با ساختار فرکتالی – نگاره از عباس ک. ریزی (ارسفیورد – نروژ)

برای آشنایی با هندسه فرکتالی:

مطالب کمی‌ پیشرفته‌تر:

ویدیو در یوتیوب

ویدیو در اینستاگرام

گشت و گذاری در علم شبکه

به دعوت بچه‌های انجمن علمی فیزیک دانشگاه تهران در مورد شبکه‌های پیچیده حرف زدم. ویدیو جلسات ضبط شده. در ادامه اسلایدها رو گذاشتم.

قسمت اول: پیچیدگی و تحول انگاره

در این قسمت ابتدا به سراغ انگاره پیچیدگی می‌رویم و پیرامون تحول انگاره در فیزیک در دهه‌های گذشته صحبت می‌کنیم. نشان می‌دهیم که فیزیک آماری در گذار از ریزمقیاس به بزرگ‌مقیاس با چه چالش‌هایی روبه‌رو بوده. سپس به دنبال توجیه رفتارهای جمعی در سیستم‌های فیزیکی و زیستی به اهمیت برهمکنش‌های نابدیهی و شبکه‌های پیچیده می‌رسیم.

قسمت دوم: مقدمه‌ای بر علم شبکه

در ادامه قسمت قبل، به دنبال توجیه رفتارهای جمعی در سیستم‌های فیزیکی و زیستی به اهمیت برهمکنش‌های نابدیهی و شبکه‌های پیچیده می‌رسیم و به ویژگی‌‌های این شبکه‌ها و پدیده‌های دینامیکی روی آن‌ها می‌پردازیم. سرانجام در مورد مدل‌سازی‌های انتشار ویروس کرونا صحبت خواهیم کرد!

اسلایدها

پدیده‌های بحرانی ۱۵۰ سال پس از چارلز دلاتور

پیش‌تر نوشته‌ای تخصصی‌تر در مورد گذار فاز و پدیده‌های بحرانی نوشته بودم. این نوشته که ترجمه‌ای از یک مقاله است، بیشتر جنبه تاریخی دارد و برای مخاطب علاقه‌مند آشنا با پدیده‌های بحرانی می‌تواند جالب باشد!

پدیده‌های بحرانی ۱۵۰ سال قبل توسط چارلز کاگنیارد دلاتور در ۱۸۲۲ کشف شدند. به سبب این سالگرد، مفهوم و تاریخ اولیهٔ کشف او را بررسی کرده‌ایم و سپس با طرح مختصر تاریخ پدیده‌های بحرانی مسیر رشد و توسعه آن تا به امروز را دنبال می‌کنیم.


[arXiv:0905.1886 [physics.hist-ph

پدیده های بحرانی که امروزه یکی از مهمترین روش ها در بررسی گذار فازها در سیستم های پیچیده، فیزیک ذرات بنیادی و بسیاری دیگر از شاخه های علم فیزیک است به مجموعه‌ای از اتفاقات که در نقاط بحرانی رخ می‌دهند گفته می‌شود. پدیده های بحرانی اولین بار در بررسی گذار فازهای مواد دیده شدند. ساده ترین گذار فاز را می توان در تبخیر آب مایع و یا یخ زدن آب و گذار از فاز مایع به جامد و برعکس مشاهده کرد. در مورد آب گرمای ویژه و چگالی آب از متغیرهای قابل بررسی هستند که برای هر کدام می توان یک نمای بحرانی هم پیدا کرد و با استفاده از نظریه مقیاس و گروه های بازبهنجارش و یا نظریه ی میدان میانگین این نماهای بحرانی استخراج می‌شوند و برای هر پدیده یک کلاس جهان شمولی یافت می‌شود.

پدیده‌های بحرانی ۱۵۰ سال قبل توسط چارلز کاگنیارد دلاتور در ۱۸۲۲ کشف شدند. به سبب این سالگرد، در مقاله ی زیر به قلم برتراند برکه، مالته هنکل و رالف کنا، مفهوم و تاریخ اولیه‌ی کشف او را بررسی کرده‌ایم و سپس با طرح مختصر تاریخ پدیده‌های بحرانی مسیر رشد و توسعه آن تا به امروز را دنبال می‌کنیم.

paper-1

«مقدمه‌ای بر بازبهنجارش» هفته پنجم: بازبهنجارش در فیزیک انرژی‌های بالا، نظریه گروه‌ها و نظریه نرخ-اعوجاج

دوره «مقدمه‌ای بر بازبهنجارش»

قصد من ارائه یک معرفی مدرن از بازبهنجارش از افق سیستم‌های پیچیده‌ است. با نظریه اطلاعات و پردازش تصویر آغاز می‌کنم و به سراغ مفاهیم بنیادی چون پدیدارگی، درشت-دانه‌بندی و نظریه مؤثر در نظریه پیچیدگی خواهم رفت. آنچه برای این مجموعه نیاز دارید شهامت آشنایی با ایده‌های جدید و البته کمی نظریه احتمال، حسابان و جبر خطی است. برای تمرین‌های پیشنهادی هم خوب است که کمی پایتون و متمتیکا بدانید.

با تشکر از Simon Dedeo، موسسه سانتافه و بهار بلوک آذری.

ایده بازبهنجارش در مورد مطالعه نظریه‌ها است هنگامی که از مقیاسی به مقیاس دیگر می‌روند.

هفته پنجم: بازبهنجارش در فیزیک انرژی‌های بالا، نظریه گروه‌ها و نظریه نرخ-اعوجاج

در ابتدای این جلسه کمی در مورد بازبهنجارش در فیزیک انرژی‌های بالا صحبت خواهم کرد و سپس با معرفی کوتاهی از نظریه‌ گروه‌ها، سراغ قضیه Krohn–Rhodes می‌روم. در انتها به این پرسش می‌پردازم که آیا برتری بین روش‌های درشت-دانه‌بندی وجود دارد یا خیر. در قسمت انتهایی نظریه نرخ-اعوجاج (Rate–distortion theory) را مطرح می‌کنم.


ویدیوها

۱) بازبهنجارش در فیزیک انرژی‌های بالا

۲) نظریه گروه‌ها

۳) نظریه نرخ-اعوجاج


برای مطالعه بیشتر


اسلایدها

بازبهنجارش-قسمت-آخر

«مقدمه‌ای بر بازبهنجارش» هفته چهارم: مدل آیزینگ

دوره «مقدمه‌ای بر بازبهنجارش»

قصد من ارائه یک معرفی مدرن از بازبهنجارش از افق سیستم‌های پیچیده‌ است. با نظریه اطلاعات و پردازش تصویر آغاز می‌کنم و به سراغ مفاهیم بنیادی چون پدیدارگی، درشت-دانه‌بندی و نظریه مؤثر در نظریه پیچیدگی خواهم رفت. آنچه برای این مجموعه نیاز دارید شهامت آشنایی با ایده‌های جدید و البته کمی نظریه احتمال، حسابان و جبر خطی است. برای تمرین‌های پیشنهادی هم خوب است که کمی پایتون و متمتیکا بدانید.

با تشکر از Simon Dedeo، موسسه سانتافه و بهار بلوک آذری.

ایده بازبهنجارش در مورد مطالعه نظریه‌ها است هنگامی که از مقیاسی به مقیاس دیگر می‌روند.

هفته چهارم: مدل آیزینگ

مدل آیزینگ، به عنوان معرف‌ترین مدل در فیزیک آماری، یک مدل ساده برای توصیف گذار فاز در مواد مغناطیسی است. این مدل از متغیرهای گسسته (اسپین) به روی یک گراف مشبکه (Lattice) تشکیل شده است. در این قسمت از مجموعه مقدمه‌ای بر بازبهنجارش، نخست مدل آیزینگ را معرفی می‌کنم و سپس به سراغ درشت‌-دانه‌بندی شبکه‌ اسپینی می‌روم. چالش‌های پیش‌رو را مطرح می‌کنم و سرانجام به پدیدارگی جملات مرتبه‌-بالاتر و نقاط ثابت جریان بازبهنجارش می‌پردازم.


ویدیوها

۱) مرور جلسات گذشته و معرفی مدل آیزینگ

۲) درشت-دانه بندی شبکه اسپینی

۳) یافتن نقاط ثابت


برای مطالعه بیشتر

برای بیشتر عمیق شدن

شبیه‌سازی مدل آیزینگ


اسلایدها

بازبهنجارش-آیزینگ1

«مقدمه‌ای بر بازبهنجارش» هفته سوم: اتوماتای سلولی

دوره «مقدمه‌ای بر بازبهنجارش»

قصد من ارائه یک معرفی مدرن از بازبهنجارش از افق سیستم‌های پیچیده‌ است. با نظریه اطلاعات و پردازش تصویر آغاز می‌کنم و به سراغ مفاهیم بنیادی چون پدیدارگی، درشت-دانه‌بندی و نظریه مؤثر در نظریه پیچیدگی خواهم رفت. آنچه برای این مجموعه نیاز دارید شهامت آشنایی با ایده‌های جدید و البته کمی نظریه احتمال، حسابان و جبر خطی است. برای تمرین‌های پیشنهادی هم خوب است که کمی پایتون و متمتیکا بدانید.

با تشکر از Simon Dedeo، موسسه سانتافه و بهار بلوک آذری.

ایده بازبهنجارش در مورد مطالعه نظریه‌ها است هنگامی که از مقیاسی به مقیاس دیگر می‌روند.

هفته سوم: اتوماتای سلولی

یک اتوماتای سلولی شامل یک شبکه منظم از سلول‌های خاموش و روشن است. تحول این سلول‌ها توسط قواعد ثابتی که فقط وابسته به وضعیت قبلی آن سلول و همسایگانش است مشخص می‌شود. در این جلسه ابتدا اتوماتای سلولی را معرفی می‌کنم و به مفاهیمی چون «کامل بودن تورینگ» و «نمودارهای جابه‌جاشوند»  می‌پردازم. سپس سراغ درشت-دانه‌بندی اتوماتای سلولی و مقاله ۲۰۰۴ و ۲۰۰۵ گلدنفلد می‌روم و در نهایت در مورد شبکه‌‌های بازبهنجارش بحث خواهم کرد.


ویدیوها

۱) معرفی اتوماتای سلولی

۲) درشت-دانه بندی اتوماتای سلولی

۳) شبکه‌های بازبهنجارش


برای مطالعه بیشتر


اسلایدها

بازبهنجارش-اتوماتای-سلولی5

«مقدمه‌ای بر بازبهنجارش» هفته دوم: زنجیره‌های مارکوف

دوره «مقدمه‌ای بر بازبهنجارش»

قصد من ارائه یک معرفی مدرن از بازبهنجارش از افق سیستم‌های پیچیده‌ است. با نظریه اطلاعات و پردازش تصویر آغاز می‌کنم و به سراغ مفاهیم بنیادی چون پدیدارگی، درشت-دانه‌بندی و نظریه مؤثر در نظریه پیچیدگی خواهم رفت. آنچه برای این مجموعه نیاز دارید شهامت آشنایی با ایده‌های جدید و البته کمی نظریه احتمال، حسابان و جبر خطی است. برای تمرین‌های پیشنهادی هم خوب است که کمی پایتون و متمتیکا بدانید.

با تشکر از Simon Dedeo، موسسه سانتافه و بهار بلوک آذری.

ایده بازبهنجارش در مورد مطالعه نظریه‌ها است هنگامی که از مقیاسی به مقیاس دیگر می‌روند.

هفته دوم: زنجیره‌های مارکوف

در این قست به سراغ زنجیره‌های مارکوف می‌روم و در مورد درشت‌دانه‌بندی کردن سری‌های زمانی صحبت خواهم کرد. به فضای مدل‌ها و تغییرات پارامترها پس از بازبهنجارش خواهم پرداخت و به نقاط ثابت، کاهش ابعاد فضا و تغییر کلاس‌ها اشاره خواهم کرد.


ویدیوها

۱) سری‌های زمانی و زنجیره‌های مارکوف

۲) ریاضیات زنجیره‌های مارکوف

۳) مدل بنیادی‌تر برای داده ریز-دانه‌بندی شده


برای مطالعه بیشتر


اسلایدها

2-MC