سالها پیش در یک کنفرانس فیزیک، موقع شام متوجه شدم کنار سوبرامانیان چاندراسخار، برندهٔ جایزهٔ نوبل، نشستهام؛ کسی که به خاطر خلاقیتش برای فیزیکدانهای نسل ما جایگاهی اسطورهای داشت. در آن زمان، چاندرا پیرمرد خونگرم و کمحرفی بود. در میان غذا خوردن، به من نگاه کرد و گفت: «میدونی کارلو، برای اینکه درست حسابی به فیزیک بپردازی …» چشمانم درشت شد و در انتظار [شنیدن] گوهری گرانبها و خردمندانه خشکم زد. «… برای اینکه درست حسابی به فیزیک بپردازی، چیزی که بیش از همه نیازه، خیلی باهوش بودن نیست.» شنیدن این ایده از دانشمند برجستهای که حد بالای جرم ستارگان را فهمیده بود و نظریه ریاضیاتی سیاهچالهها را توسعه داده بود، نامعقول به نظر میرسید. اما آنچه در ادامه در جمعبندی گفت ابهام را برطرف کرد: «اونچه بیشتر از هر چیزی مهمه زیاد سخت کار کردنه.»
هر بار که به نمونهای از افسانهٔ «خلاقیت ناب» یا «تخیل بی حد و مرز» برمیخورم، کلمات چاندراسخار به یادم میآید. شنیدهام که برخی گفتهاند برای ساختن چیز جدیدی کافی است قواعد را زیر پا بگذارید و خود را از بار سنگین گذشته رها کنید. گمان نمیکنم خلاقیت در علم چنین باشد. آینشتین یک روز صبح از خواب بیدار نشده و یکباره به این فکر افتاده باشد که چیزی سریعتر از نور وجود ندارد. ایدهٔ چرخش زمین به دور خورشید هم خیلی ساده به ذهن کوپرنیک نرسیده. همینطور ایدهٔ فرگشت گونهها به ذهن داروین. ایدههای جدید یکباره از آسمان نمیآیند.
ایدهها از عمیق شدن در دانشِ معاصر پدید میآیند؛ از شدیدا از آنِ خود کردن آن دانش، تا رسیدن به نقطهای که غرقه در آن زندگی کنید. از مرتب به سمت سؤالهای باز رفتن و آزمودن همه راههای رسیدن به پاسخ و بعد دوباره آزمودن همه راههای رسیدن به پاسخ و بعد باز هم آزمودن همه راههای رسیدن به پاسخ! تا اینکه در جایی که کمتر انتظارش را داشتیم، شکافی، شیاری، گذرگاهی کشف کنیم. چیزی که پیشتر کسی متوجه آن نشده بوده و در عین حال در تضاد با آنچه میدانیم هم نیست؛ چیز خیلی کوچکی که به واسطه آن اعمال نفوذ کنیم، لبهٔ هموار و نامطمئن نادانی غیرقابل درکمان را بخراشیم و راه نفوذی به یک سرزمین جدید باز کنیم. این روشی است که بیشتر ذهنهای خلاق در علم انجامش دادهاند و امروزه هم هزاران پژوهشگر برای پیشبرد دانش ما در حال انجامش هستند.
کوپرنیک، با جزئیات کامل با کتاب قدیمی بطلمیوس (المجسطی) آشنا بود و در لابهلای آن، شکل جدید جهان را دید. کپلر سالها مشغول سر و کله زدن با دادههایی بود که پیش از او تیکو براههِٔ ستارهشناس جمعآوری کرده بود، قبل از آن که مدارهای بیضیشکل که کلید درک منظومهٔ شمسی را فراهم کردند را از میان آن دادهها رمزگشایی کند.
دانش جدید از دانش امروزی پدید میآید چرا که درون آن، تضاد، تنشهای حلنشده، جزئیاتی که منطقی نیستند و شکاف وجود دارد. تطبیق کامل نظریه الکترومغناطیس با مکانیک نیوتونی دشوار بود و این فرصتی را برای آینشتین فراهم کرد. مسیرهای زیبای بیضیشکل سیارهها که کپلر کشف کرده بود را نمیشد با سهمیهایی که گالیله محاسبه کرده بود تطبیق داد و این کلید پیشبردن را به نیوتون داد. طیفهای اتمی که سالها اندازهگیری شده بودند با مکانیک کلاسیک سازگار نبود و این موضوع، هایزنبرگ را به شدت برانگیخت. تنشهای درونی بین یک نظریه و نظریه دیگر، بین داده و نظریه، بین اجزای مختلف دانش ما، تنشهای بهظاهر حلناپذیری را ایجاد میکنند که از آنها چیزهای جدید سرچشمه میگیرند. آن چیز جدید قواعد قدیمی را میشکند، اما با هدف حل تضادها نه برای شکستن قواعد به خودی خود.
افلاطون در متن عظیم نامهٔ هفتم خود فرایند کسب دانش را چنین شرح میدهد:
پس از تلاشهای زیاد، هنگامی که نامها، تعاریف، مشاهدهها و دیگر دادههای حسی گرد هم میآیند، کنار یکدیگر قرار میگیرند و با جزئیات تمام با هم مقایسه میشوند، در طی یک بررسی موشکافانه و آزمونی آرام ولی سختگیرانه، برای هر جور مسألهای، در پایان ناگهان نوری (درک ما) پدیدار میشود و همینطور وضوحی ازهوش که اثرات آن گویای محدودیتهای توان بشر است.
وضوح هوش … اما فقط پس از تلاشهای فراوان!
دو هزار و چهارصد سال بعد، آلن کن، یکی از بزرگترین ریاضیدانان حال حاضر، در عبارات زیر کشف آنچه که کسی را ریاضیدان میکند را توضیح میدهد:
کسی مطالعه میکند، مطالعه را ادامه میدهد، همچنان مطالعه میکند، سپس یک روز، در میان مطالعه، حس غریبی ایجاد میشود: اما این نمیتونه باشه، نمیتونه اینطوری باشه. یه چیزی هست که درست از آب درنمیاد. در آن لحظه، شما یک دانشمند هستید.
متن بالا ترجمه جستاری از کارلو روولی فیزیکدان ایتالیایی است. او عمدتا در زمینه گرانش کوانتومی کار میکند و بنیانگذار نظریه گرانش کوانتومی حلقه است. اصل این نوشته اخیرا در کتابی با عنوان There Are Places in the World Where Rules Are Less Important Than Kindness منتشر شده است.
نگاهی به کتاب «مقدمه کوتاهی بر اخترشناسی در خاورمیانه» نوشته جان ام. استیل
تصویر جلد کتاب «مقدمه کوتاهی بر اخترشناسی در خاورمیانه» اثر جان ام. استیل
چند وقت پیش، کتاب «مقدمه کوتاهی بر اخترشناسی در خاورمیانه» رو بصورت خیلی اتفاقی توی کتابفروشی پیدا کردم. اینقدر از خوندنش لذت بردم که بر آن شدم کتاب رو معرفی کنم تا شاید چند نفر دیگه هم تجربهاش کنن. نکته دلچسب این کتاب اینه که ترجمه خیلی خوب و روان و عالمانهای داره. چیزی که متأسفانه کمتر توی کتابهای ترجمه شده علمی میبینیم.
این کتاب ، مروری بر تاریخ و دستاوردهای بشر در زمینه نجوم هست؛ از زایش آن در میانرودان، تا گسترش و مدل کردن آن توسط یونانیان باستان و بعد پیشرفت و اصلاحش توسط دانشمندان تمدن اسلامی که منجر به تفکرات ساختارشکنانه در میان دانشمندان دوره نوزایی -از جمله کوپرنیک و کپلر- شد.
در ادامه مرور کوتاهی میکنیم بر مطالب این کتاب (البته که خواندن خودِ کتاب لطف دیگهای داره🙂).
اخترشناسی یکی از قدیمیترین علوم در جهان است. از هزاران سال پیش، انسان با نگاه به آسمان بالای سر و بکارگیری تخیل خود، خطوط فرضی بین ستارگان رسم کرد و شکلهایی را متصور شد که امروزه آنها را صورتهای فلکی مینامیم. تا جایی که میدانیم محل زایش علم اخترشناسی، در بابل باستان (منطقه میانرودان) بوده است. هر چند که چین نیز خیلی از آنجا عقب نبود.
اخترشناسی در بابل و تمدن میانرودان
از هزاره چهارم پیش از میلاد و اختراع خط، میتوان شواهدی از نقش آسمان و ستارگان در زندگی بابلیان باستان مشاهده کرد. مردم میانرودان بر این باور بودند که آسمان شامل ستارههای بیشمار و هفت سیاره که آنها را «بیبو» یا «گوسفند سرگردان» مینامیدند، است. این هفت سیاره عباتاند از: ماه، خورشید و پنج سیارهای که با چشم غیر مسلح میتوان در آسمان شب دید (عطارد، زهره، مریخ، مشتری و زحل).
یکی از کاربردهای اخترشناسی بیشک تهیه تقویم است. بابلیان بر اساس مشاهدات خود از هلال ماه تقویمی بنا کرده بودند که بسته به اینکه هلال ماه کی رویت شود، میتوانستند ماههای ۲۹ یا ۳۰ روزه داشته باشند. همچنین میانرودانیها مفهوم ماههای کبیسه را برای جلوگیری از قرار گرفتن ماههای مختلف سال در فصلهای متفاوت مرسوم کردند. این ماههای افزوده شده، تقریبا هر سه سال یکبار اضافه میشدند. تقویم معمولا به دو منظور به کار برده میشد: اولا چارچوب زمانی برای جمعآوری مالیاتها و معاملات تجاری بود. ثانیا برای اینکه فعالیتهای همگانی مانند جشنوارهها و به جا آوردن مراسم مذهبی در زمان مناسب انجام گیرند.
یکی دیگر از موارد مرتبط با آسمان در زمان بابلیان باستان، اختربینی و پیشگوییهای آسمانی بود. طبق دیدگاه میانرودانیها، کیهان باید با نظم و ترتیب آفریده شده باشد. البته در این میان اراده خداوندان گاهی نشانههایی را در آسمان قرار میداد تا به انسانها پیغامی برساند. بنابراین طالعبینها وظیفه تفسیر و پیشگویی این وقایع را داشتند. به عنوان مثال پدیده ماهگرفتگی یکی از بدشگونترین پدیدههایی بود که امکان داشت در آسمان اتفاق بیفتد. ماهگرفتگی میتوانست خبر از جنگ، طاعون، قحطی و حتی مرگ شاه بدهد. حتی تشریفاتی در نظر گرفته میشد با عنوان «تعویض شاه» که طی آن، شاه کسی را جانشین خود میکرد تا طالع شیطانی گریبان جانشین را بگیرد. در طی این مدت شاه زندگی عادی و بدون تشریفاتی در قصر داشت و جانشین آن که معمولا یک زندانی یا اسیر بود از بیشتر لذتهای منصب شاهانه بهرهمند میشد. اما بعد از اتمام این دوره محکوم به اعدام بود! بنابراین تلاشهایی برای پیشبینی گرفتها صورت گرفت.
تا به امروز، بیش از یک هزار قطعه از کتیبههایی به خط میخی کشف شدهاند که نشان میدهند از حدود ۷۵۰ سال پیش از میلاد، بابلیان هر شب مشاهدات خود از آسمان را ثبت میکردند. این نوشتهها که توسط کاتبان باستان شاهی ثبت میشدند با عنوان «شاگینه» به معنای «مشاهده منظم» بودند که امروزه پژوهشگران به آنها لقب «روزنوشتههای نجومی» دادهاند. این سنت بیش از ۸۰۰ سال به طور مداوم وجود داشته که در نوع خود و در طول تاریخ کمنظیر است. در این روزنوشتههای نجومی مواردی از قبیل: وضعیت ماه و رویتپذیری هلال نو، رصدهای سیارهای، وضعیت آب و هوا و گرفتهای خورشید و ماه ثبت میشدند. این رصدهای منظم آسمان موجب شد تا شیوههای متنوعی برای پیشبینی این رویدادهای نجومی ابداع شوند.
اصول تمام شیوههای بابلیها برای پیشبینی رویدادهای اخترشناسی، اصل «ارتباط دورهای» است. روابط دورهای، دو عدد را به یک پدیده وصل میکردند. مثلا تعداد سالهای بین وقوع یک پدیده و تکرار دوبارهاش در همان جای آسمان با تعداد دفعاتی که این پدیده اتفاق افتاده است، یکی از متداولترین کاربردهای روابط دورهای در اخترشناسی بابل بود. علاوه بر روابط ساده خطی برای پیشبینی پدیدهها که براساس همین اصل ساده روابط دورهای بودند، برای در نظر گرفتن حرکت اجرام آسمانی که متغیر بودند (مانند حرکت سیارهها و ماه)، از «توابع پلهای» و «توابع زیگزاگ خطی» نیز استفاده میشد.
اخترشناسی در یونان باستان
در سال ۳۳۱ پیش از میلاد، با لشکرکشی اسکندر کبیر به بابل، میانرودانیها به زیر سلطه یونانیها درآمدند. یونانیها بیشتر رویکرد فلسفی به اخترشناسی و به ویژه مباحث کیهانشناسی داشتند. دادههای رصدی بابلیان موجب شد تا یونانیان با استفاده از آن بتوانند دیدگاههای فلسفی خود را با ابزارهای هندسی خود مدلسازی کنند.
الگوی دایرههای غیر هممرکز برای خورشید. نگاره از کتاب
نقطه اوج رویکردهای فلسفی یونانیان در مورد اخترشناسی را میتوان عقاید فلسفی ارسطو دانست که توسط دانشمندان، طی قرون بعد مورد قبول عام قرار گرفته بود. ارسطو بر این باور بود که زمین، کرهای ثابت در مرکز عالم است که همه ستارگان و سیارات و ماه و خورشید به دور آن میچرخند. در منطقهای که ماه، زمین و ساکنان آن قرار دارند، همگی از ترکیب چهار عنصر اصلی ساخته شدهاند: خاک، هوا، آتش و آب. آنها به طور ذاتی در سکون هستند یا بر روی خطوط راست حرکت میکنند. آسمان و هر چیزی که در بالای ماه قرار دارند از عنصر دیگری به نام «اثیر» ساخته شدهاند که یک حرکت ذاتی دایرهای دارد. از این رو هر حرکتی در آسمانها با مسیرهای دایرهای ساخته شده است. البته شخصی به نام آریستارخوس ساموسی مدعی بود که زمین در هر روز به دور محور خود و خود نیز به دور خورشید که در مرکز عالم قرار دارد میچرخد. او مدلی بسیار شبیه به مدل کوپرنیک ارائه داد، اما با واکنشهای خصومتآمیز مواجه شد و بعدها نیز کسی برای دفاع از این نظریه اقدام نکرد و این مدل به فراموشی سپرده شد.
نظریات ارسطو در قرن دوم پیش از میلاد، توسط ابرخُس و پس از آن بطلمیوس مدلسازی شد. البته کتابی از ابرخُس بر جای نمانده است اما بطلمیوس در کتاب معروف خود «مجسطی» به مدلهای ابرخُس پرداخته است. ابزار اصلی هر دو برای مدلسازی، فرضیههای هندسی فلک تدویر (مربوط به دایرههایی که روی محیط دایره بزرگتر میگردند) و دایرههای غیر هممرکز بود. به عنوان مثال رصدهای دقیق زمان انقلابین و اعتدالین، نشان میدانند که بهار، ۹۴ و یکدوم روز طول میکشد؛ تابستان، ۹۲ و یکدوم روز؛ پاییز، ۸۸ و یکهشتم روز؛ و زمستان، ۹۰ و یکهشتم روز. بنابراین باید خورشید در بخشی از دایره تندتر و در بخشی کندتر حرکت کند که این امر برخلافِ فرض فلسفی اولیه ارسطو مبنی بر سرعت ثابت اجرام بر روی مدار دایرهای بود. این مشکل را میتوان به دو روشی که در بالا اشاره شد حل کرد؛ ۱) الگوی دایرههای غیر هممرکز: زمین را کمی از مرکز دایره دور کنیم. چهار نقطه اعتدالی و انقلابی چنان که از زمین دیده شوند در زاویهای قائمه نسبت به یکدیگر قرار دارند، اما حالا خورشید باید بر روی دایره مسیر طولانیتری بین اعتدال بهاری و انقلاب تابستانی بپیماید.
الگوی فلک تدویر برای خورشید. نگاره از کتاب
۲) الگوی فلک تدویر: در این الگو زمین دوباره به مرکز یک دایره که «فلک حامل» نامیده میشد، بازمیگردد، اما خورشید بر روی دایرهای کوچکتر که «فلک تدویر» خوانده میشود حرکت میکند که مرکز این دایره دوم بر روی دایره حامل [فلک حامل] استوار است. در الگوی خورشیدی ابرخُس، دو دایره با سرعتی یکسان اما در جهتهای مخالف میچرخند. واضح است که در واقع این دو الگو از نظر هندسی یکی هستند.
این الگوها در مورد ماه با دادههای رصدی همخوانی نداشتند. بطلمیوس اصلاحی بر نظریه ماه ابرخُس ارائه داد؛ بدین صورت که فلک ترویر ماه بر روی دایرهای حمل میشود که مرکز آن دایره خود به دور زمین و در جهت مخالف میچرخد. اما این مدل یک ایراد فاحش داشت که البته خود بطلمیوس به شکل عجیبی در موردش ساکت ماند: در مدل بطلمیوس فاصله ماه از زمین با ضریبی از مرتبه دو تغییر میکند و این به این معنی است که اندازه قرص ماه در زمانهایی میبایست دو برابر زمانهای دیگر باشد! پرواضح است که هیچگاه در آسمان چنین چیزی دیده نمیشود.
الگوی نهایی بطلمیوس برای ماه. نگاره از کتاب
همچنین بطلمیوس دریافت که حرکت متغیر سیارات را نمیتوان با الگوی ساده فلک تدویر یا دایره غیر هممرکز توصیف کرد. وی برای حل این مسئله دو الگو را با هم ترکیب کرد که در آن یک سیاره در فلک تدویر روی یک فلک حامل که نسبت به مرکزیت زمین هم غیر هممرکز است، حرکت میکند. علاوه بر اینها، ابزار ریاضی جدیدی را به این مدل اضافه کرد که بعدها به «فلک معدل المسیر» معروف شد. معدل المسیر نقطهای است که خارج از مرکز دایرهای قرار گرفته است که گرداگرد آن دایره یک نقطه با سرعت زاویهای ثابت حرکت میکند. بطلمیوس نقطه معدل المسیر خود را در مقابل زمین نسبت به مرکز دایره قرار داد. این امر باعث میشود یکی از اصول فلسفی ارسطو یعنی حرکت دایرهای یکنواخت نادیده گرفته شده و در واقع بین منطق فیزیکی و فلسفی اخترشناسیاش، جدایی آشکاری ایجاد شود.
مدل فلک معدل المسیر یطلمیوس برای یک سیاره خارجی. نگاره از کتاب
کتاب مجسطی بطلمیوس نقطه اوج اخترشناسی یونانی بود. بعد از آن ظرف چند قرن تمدن یونانی، رو به افول رفت و به فراموشی سپرده شد. اما بعدها آثار به جای مانده از یونانیان باستان به دست دانشمندان اسلامی رسید و فصل جدیدی در علم اخترشناسی رقم خورد.
اخترشناسی در جوامع اسلامی
ظهور اسلام کمک شایانی به عمومیسازی اخترشناسی در بین جامعه اسلامی کرد. اخترشناسی از سه جهت حائز اهمیت بود: ۱)رصد هلالهای نو، برای تعیین اول ماههای قمری، به خصوص هلال ماه رمضان و شوال. ۲) تعیین ساعت پنج نوبت نمازهای روزانه ۳) تعیین جهت قبله (کعبه) برای مکانهای مختلف. اهمیت این موضوعهای مرتبط با اخترشناسی موجب توسعه آن و ابداع روشهای جدید شد.
اگرچه رصد پدیدههای آسمانی از نظر مناسک مذهبی اهمیت داشت، اما این تنها دلیل تمایل دانشمندان اسلامی به رصد آسمان نبود. آنها سعی داشتند تا با ثبت موقعیت دقیق ماه، خورشید و سیارهها مدل بطلمیوسی را مورد آزمایش قرار داده و بهبود بخشند. علاوه بر اینها تلاشهایی برای اندازهگیری دقیق موقعیت ستارگان نیز صورت پذیرفت. از جمله آنها میتوان به کتاب «صور الکواکب الثابته» اثر صوفی در قرن دهم میلادی (چهارم هجری) اشاره کرد. وی نخستین کسی بود که تلاش کرد فهرست بطلمیوس را با اندازهگیری موقعیت و قدر برخی از ستارهها بهروز کند. علاوه بر این، در قرن پانزدهم میلادی (نهم هجری)، چند تن از جمله الغبیگ و غیاث الدین جمشید کاشانی تلاش کردند تا فهرست جدیدی شامل ۱۰۱۸ ستاره را تهیه کنند.
صفحهای از کتاب صوفی که صورتهای فلکی را شرح میدهد. نگاره از کتاب
یکی از ویژگیهای بارز اخترشناسی در دوره اسلامی، ساخت ابزارهای نجومی بوده است. صدها ابزار نجومی متعلق به دنیای اسلام حفظ شده که از جمله آنها میتوان به کرههای آسمان، ساعتهای آفتابی و ربع جداری اشاره کرد. اما بدون شک، پادشاه ابزارهای نجومی اسلامی، اسطرلاب بود. اسطرلاب در واقع عملکردی شبیه به یک کامپیوتر مکانیکی دارد که امکان تعیین زمان از روی موقعیت یک جرم آسمانی یا برعکس را فراهم میکند. علاوه بر این از اسطرلاب میتوان به عنوان ساعت، قطبنما و ابزار محاسبه نیز استفاده کرد.
از جمله دیگر کارهای ارزشمندی که دانشمندان اسلامی در زمینه اخترشناسی انجام دادند، ساخت رصدخانههای نجومی بود که معمولا علاوه بر وظیفه رصد آسمان، به عنوان مکانی برای آموزش اخترشناسی نیز بودند. از جمله رصدخانههای معروف میتوان به «بیتالحکمه» اشاره کرد که توسط هارونالرشید و مأمون عباسی در قرن نهم میلادی(دوم و سوم هجری قمری) ساخته شد تا از اخترشناسی حمایت شود.در قرنهای بعدی رصدخانههای دیگری نیز ساخته شدند که بدون تردید مهمترین و بزرگترین آنها رصدخانه مراغه بود که توسط نصیرالدین طوسی در زمان هلاکو در قرن سیزدهم میلادی (هفتم هجری قمری) در شمال ایران ساخته شد.
در قرن هشتم و نهم میلادی (دوم و سوم هجری قمری)، متون نجومی یونانی بین اخترشناسان مسلمان راه یافتند. کتاب مجسطی بطلمیوس پایهای شد برای مطالعات نظری بعدی. دانشمندان اسلامی سعی کردند تا با انجام رصدهای تازه به تصحیح پارامترهای بطلمیوس بپردازند یا با ایجاد روشهای نوین هندسی بخشی از آن را اصلاح کنند. برای نخستین بار در قرن یازدهم میلادی (پنجم هجری قمری) بود که اصول بنیادی نظریههای اخترشناسی بطلمیوس به صورت جدی توسط ابن هیثم زیر سوال رفت. جدیترین نقد او به نظریه سیارهای بطلمیوس و به طور مشخص فلک معدل المسیر مربوط میشد. طبق نظریه بطلمیوس تمام دایرهها باید کرههایی جامد تفسیر شوند؛ حال آنکه تغییر سرعت در قسمتهای مختلف وقتی از مرکز کره دیده شوند از نظر فیزیکی توجیهی ندارد. علاوه بر این همانطور که قبلا ذکر شد، مدل بطلمیوس برای ماه افزایش دو برابری اندازه ماه در آسمان را پیشبینی میکرد که خلاف واقع است.
جفت طوسی. نگاره از کتاب
در قرن سیزدهم میلادی (هفتم هجری قمری)، نصیر الدین طوسی توانست ابزاری ریاضی را ابداع کند که بوسیله آن هر دو مشکل رفع شود. این ابزار ریاضی که امروزه به «جفت طوسی» معروف است، از دو دایره یا دو کره تشکیل شده که اندازه یکی از آنها نصف دیگر بوده و درون یک دایره بزرگتر میچرخد. اگر دایره داخلی در جهت مخالف اما با دو برابر سرعت دایره بزرگتر بچرخد، در این صورت نقطهای در دایره داخلی میتواند یک خط مستقیم ترسیم کند. بنابراین در جهانبینی ارسطوییان که همه چیز در آسمانها باید بهوسیله حرکتهای یمنواخت دایرهای شرح داده شود، طوسی موفق شد سازوکاری برای ایجاد حرکت خطی ابداع کند که از نظر فلسفی درست باشد.
از دیگر کارهایی که بهنوعی نقطه عطفی در اخترشناسی بود و بعدها پایهای شد برای پیشرفتهای دوران نوزایی در اروپا، ابداعات ابن شاطر بود. ابن شاطر با بهرهگیری از رصدهای دقیقی که قبلا انجام شده بود توانست تغییرهایی را در نظریههای پیشین اعمال کند. اصل ابداعات وی بر روی الگوهای اخترشناسی، جایگزین کردن دایرههای غیر هممرکز با فلکهای تدویر و جایگزین کردن فلک معدل المسیر با فلکهای تدویری باز هم بیشتر بود. برای مثال، مدل او برای سیارههای خارجی، فلک تدویری بر روی یک فلک تدویر دیگر بر روی یک فلک تدویر دیگر بر روی یک فلک حامل است. به رغم ظاهر پیچیده، اما نتیجه پایانی بسیار زیبا و دقیق است.
مدل ابن شاطر برای یک سیاره خارجی
دستاوردها و میراث اخترشناسان اسلامی احتمالا از راه اسپانیا و بیزانس به دست دانشمندان دوران نوزایی در اروپا رسید. کوپرنیک از نجوم اسلامی بهره بیشتری برد. او به دفعات از جفت طوسی استفاده کرده است. همچنین الگوهای سیارهای و ماهِ او از نظر ریاضی، همان ریاضیای است که ابن شاطر استفاده کرده است (به جز یک جابجایی از جهانی زمین-مرکز به جهانی به مرکزیت خورشید). هر چند کوپرنیک اشارهای به طوسی یا این شاطر در کارهای خود نکرده است اما احتمالا این امر به دلیل ناشناخته بودن هویت آن دو برای وی بوده است.
سخن پایانی
این پست رو با یک پاراگراف از قسمت پایانی کتاب تموم میکنم:
«تاریخ اخترشناسی فراتر از گزارش رصدها و محاسبهها، ابداعات و افراد است. این تاریخ، داستان انتقال دانش اخترشناسی از نسلی به نسل بعد و از یک فرهنگ به فرهنگی دیگر را هم دربردارد. اخترشناسی در خاورمیانه، نخستین بار در میانرودان باستان توسعه یافت، به هند و یونان رفت، بعد به سرزمینهای عربی و سرانجام در اواخر سدههای میانه به اروپا رسید. هر فرهنگ بر میراث فرهنگهای گذشته چیزی اضافه کرد، عنصرهایی را از دانش پیشینیانش گرفت و آنها را با اخترشناسی خود تلفیق کرد، که گاه باید خود را با آن سازگار میکرد، چیزهایی را تصحیح میکرد (گاهی به اشتباه) از نو مینوشت و درنهایت به چیزی جدید و ممتاز تبدیلشان میکرد.»
«مقدمه کوتاهی بر اخترشناسی در خاورمیانه» نوشته جان ام. استیل
در قلب توده بزرگی از مادهی تاریک، در نقطهای از کهکشان مارپیچی بزرگمان، بر روی سیارهی خارقالعادهای که به دور خورشید با شکوهمان میچرخد، در ادامهی زنجیرهای که هنوز تنها اثری از حیات زنده در کیهانمان است، ما نیز شروع به زندگی کردیم. به عنوان گونهای با قدرت تفکر، همیشه به دنبال زبانی برای برقراری ارتباط با محیط اطرافمان بوده و هستیم. گاه با هدف رفع نیاز، گاه برای رفع حس کنجکاوی سیری ناپذیرمان و حتی گاهی در اثر ترس! اما هدف هرچه بود و هرچه هست، امروز درجای عجیبی از تاریخ علم ایستادهایم و با غرور به جهانی نگاه میکنیم که نه آنطور که ما دلمان میخواهد، بلکه آن گونه که واقعا هست، در برابر ما ایستاده است.
ما همیشه میخواستیم با طبیعتمان سخن بگوییم، و در طول تاریخ، فیزیک راهی بود که برای این هدف انتخاب کردیم. فیزیک زبان مشترک ما و طبیعت شد. ما مشاهده میکردیم، بعدها یاد گرفتیم ثبت کنیم، بر پایهی مشاهداتمان فرضیه سازی کردیم و جلو رفتیم. زمینمان را تخت تصور میکردیم، هر کدام از سیارات و ستاره ها را خدایی میپنداشتیم که باید نیایش کنیم، وگرنه بر ما عذاب میفرستند. در ذهنمان خدایان ناشناختهای ساختیم که شب و روز را پدید میآوردند. خدایانی که غروب خورشید را میخوردند و صبح باز او را به دنیا میآوردند. خدایانی که صبح از شرق برمیخاستند، در طول روز در آسمان سیر میکردند و غروب مانند پیرمردان در بستر میمردند. رعد و برق، خشم خدایان بود و زلزله خشم مادرمان زمین.
فرضیه ساختیم، خیالبافی کردیم و جلو آمدیم. سفر کردیم، اختراع کردیم، تا آنجا که زمین و آسمان را هر روز بهتر و بهتر شناختیم. فرضیاتمان به مرور حقیقیتر میشدند، از محیطمان به زیباترین وجه استفاده میکردیم، ویژگیهایش را میدانستیم، دارو میساختیم، ظروف زیبا، وسایل نقلیه، ساختمانهای باشکوه ، اما هنوز پیوند عمیقی برقرار نبود. با طبیعتمان به زیبایی زندگی میکردیم اما زبانش را نمیدانستیم. همیشه نگاهمان به آسمان هم معطوف بود. آسمان پر رمز و راز را میدیدیم. ستارگانی را که هر شبمان را زیبا میساختند، در صورتهای فلکی دسته بندی کردیم. علم اخترشناسی را به جود آوردیم و هر شب آسمان را رصد میکردیم. همه چیز را میدیدیم، اما هنوز علتها ناشناخته بود.
نظریه زمینمرکزی بطلمیوس
بطلمیوس که بین سالهای ۹۰ تا ۱۶۸ میلادی زندگی میکرد، معتقد بود زمین در مرکز جهان قرار دارد، و ماه و خورشید و سایر سیارات، به دور آن میچرخند. در این نظریه، سیارات مداری نداشتند و انگار بر روی صفحهای شیشهای به نام فلک چسبیده بودند و فلک به دور زمین در گردش بود. او معتقد بود که ۸ یا ۹ فلک وجود دارد و بر روی فلک آخر، ستارهها چسبیدهاند.
یک نقاشی قدیمی برآمده از طرز تفکر بطلمیوسی (زمینمرکزی) – نگاره از ویکیپدیا
پس از این فلک، که به آن فلک الافلاک میگفتند، خداوند و فرشتگان زندگی میکردند. این نظریه که به آن زمین مرکزی میگویند شاید یکی از نخستین نظریات جامع و منسجم ما درباره ی کیهانمان بود. این باور نزد ما پذیرفته شده بود. ما در مرکز جهان هستی، بر روی سیارهی زیبایمان نشسته بودیم و همه به دور ما میگشتند. کلیسا نیز این فرضیه را بشدت تبلیغ میکرد. خیالی خوش و پرغرور اما ناپایدار. تا بالاخره در تاریخمان گالیله پیدا شد. او بود که گفت نه تنها ما مرکز جهان نیستیم، بلکه ما و چند سیارهی دیگر همه و همه به دور خورشید زیبایمان میگردیم. او نگاه ما را به طبیعت و به ویژه علم مکانیک دگرگون کرد، و در یک کلام، او نخستین پیوند میان طبیعت و ریاضیات را در قلب علم حرکت شناسی نشان داد. وقتی به او فکر میکنم، و به جهانی که پیش از او میشناختیم، تصمیم و کار بزرگش بسیار ترسناک به نظرم میرسد. تصور کنید در خانهای نشستهایم، دیوارهایش را با رنگهای بسیار زیبا نقاشی کردهایم و تصور میکنیم تمام حقیقت، هرآن چیزی است که در نقاشیهایمان کشیدهایم. ناگهان مردی از راه میرسد، دیوارها را خراب میکند،نقاشیها را میسوزاند، ما را وسط تاریکی بیانتهایی رهایمان میکند و تنها مشعلی به دستمان میدهد. او نمیداند نتیجهی جستجویمان چه خواهد بود، اما باور دارد حقیقت بسیار زیباتر و موثرتر از تمام نقاشیهایمان بر در و دیوار خانهمان است. او به درستی و زیبایی حقیقت باور دارد. ما این مشعل را گرفتیم و جلو آمدیم.
نیوتون و ادامهی راه
مفهوم گرانش را فهمیدیم. حرکت سیارات را توجیه کردیم. مهندسی نوینی بر پایهی معادلاتش بنا کردیم. علم مهندسی هر روز زندگی را سادهتر میکرد. اما سوالات ما پایانی نداشت. مطالعه بر روی نور از زمان نیوتون جدیتر دنبال میشد. تلسکوپ گالیله که یکی از دستاوردهایش کشف چند قمر از اقمار مشتری بود، به وسیلهی نیوتون اصلاح شد و کار رصد آسمان را اندکی بهبود بخشید. همچنین مطالعهی ما بر روی الکتریسته و مغناطیس روز به روز بیشتر میشد و کسانی ماند لنز، فارادی، آمپر و دیگران ماهیت بار الکتریکی را معرفی کردند. سرانجام دوران طلایی فیزیک فرا رسید. در اواخر قرن نوزدهم، تامسون مدل اتمیاش را ارائه کرد. رادرفورد اولین بار مفهوم هسته را معرفی کرد. پروتونها و نوترونها شناخته شدند و سرانجام مدل سیارهای توسط نیلز بور ارائه شد. مدلی که اگر درست بود بنابر نظریهی الکترومغناطیس، به ناپایداری اتمها و نابودی اتم منجر میشد. در این زمان بشر به آزمایشهایی دست میزد که یکی پس از دیگری ناتوانی فیزیک نیوتونی را در توضیح مسائلی روشنتر میساخت. اینطور به نظر میرسید که باز راهمان را گم کردهایم.
اما نه!
ما میدانستیم ماشینهایمان، هواپیماها و تمام علم ساختمان، بر پایهی فیزیک نیوتونی دقیق و زیبا کار میکنند و جلو میروند. اینجا بود که به اصل بسیار زیبای همخوانی رسیدیم. اصلی که سنگ بنا و شرط اساسی تمام نظریاتمان شد:
اگر نظریه ی جامعی ارائه میشود، این نظریه باید در شرایط خاصی که مکانیک نیوتونی برقرار است، معادلات نیوتون را بدست دهد.
برای مثال، اگر به دنبال نظریهی جامعی هستیم که قلب اتم را نیز برایمان توضیح دهد، چنانچه در معادلاتمان باز از اتم به اجسام عادی و سرعتهای معمولی رسیدیم، باز معادلات باید همان معادلات نیوتون شوند. و این اصل چراغ راهمان شد. تابش جسم سیاه، اثر فوتوالکتریک، اثر کامپتون و … هر یک بیش از پیش ما را به سمت نظریهی شگفتانگیز کوانتوم سوق داد.
دوگانگی موج و ذره یکی از مفاهیم عجیب مکانیک کوانتومی- نگاره از ویکیپدیا
با مکانیک نیوتونی و درک ماهیت موجی-ذرهای در ابعاد کوانتومی، هایزنبرگ ، شرودینگر و دیراک زبانی ساختند بسیار مدرن که ما را به اعماق ماده راه داد. در اوایل قرن بیستم بود که اینیشتین با تئوری زیبای نسبیت خاصش از راه رسید. نظریهای که در پاسخ به مسئلهی یکسان بودن سرعت نور نسبت به هر ناظر لخت با هر سرعتی نوشته شده بود. این نظریه نشان داد که در سرعتهای بالا، زمان هم از نگاه ناظرهای مختلف متفاوت است و به این صورت، مفاهیم قدیمی فضا و زمان به هم گره خوردند و مفهومی بنیادیتر به نام فضا-زمان شکل گرفت. اما زیبایی بینظیر معادلات نسبیت خاص درآن بود که اگر سرعت متحرک نسبت به سرعت نور کم میبود -مثلا در حد سرعت حرکت ما و وسایل نقلیهمان- معادلات باز به همان معادلات آشنای نیوتون میرسید. پس ظاهرا ما همه چیز را میدانستیم. در قلب ماده مکانیک کوانتوم جواب سوالاتمان را میداد. برایمان هسته و اتم را توضیح داد. اتم شکافتیم. انرژی گرفتیم و با توحشی که هنوز در وجودمان تمامی ندارد بمب ساختیم. در سرعتهای بالا، معادلات نسبیت حلال مشکلاتمان شد و هنگامی که سرعت کم میشد و ابعاد ماده به ابعاد معمولی میرسید، معادلات نیوتون زندگی روزمرهمان را پاسخگو بود.
نیروی گرانشی چه؟
آیا گرانش همانگونه که نیوتون تصور کرده بود، شکلی از نیرو بود؟ و این باز آلبرت اینیشتین بزرگ پس از حدودا یک دهه از ارائهی نسبیت خاص، نسبیت عام را مطرح کرد و از گرانش نه به عنوان یک نیرو که به عنوان اثری هندسی نام برد. در واقه آنچه به عنوان نیروی گرانشی میشناسیم چیزی نیست جز خمیدگی فضا-زمان در اثر وجود ماده. از دل این تئوری ، سیاهچالهها، کرمچالهها و امواج گرانشی سربرآوردند. ترکیب این نظریه با شواهد رصدی مبنی بر انبساط کیهان، معادلات فریدمان در توصیف کیهان را بدست داد. این معادلات ما را به بیگ بنگ رساندند. جایی که احتمالا آغاز فضا-زمان و در نتیجه کیهان زیبای ماست. سرانجام با اضافه کردن نظریهی تورم و همچنین کشف اثرات مادهی تاریک و انرژِی تاریک، به مدل استاندارد کیهانشناسی رسیدیم. مدلی که کیهانی را شرح میدهد که از مهبانگ آغاز کرده، ناگهان تورم یافته و سپس ذرات در آن شکل گرفتهاند. ذرات ماده و ضد ماده و همچنین چیزی به نام مادهی تاریک که البته هنوز هویتش را نمیدانیم. ماده بر ضد ماده غلبه کرده و همین موجب شکلگیری کهکشانهای زیبا، سیارات و ستارهها شده است. ماده معمولی که میشناسیم که تنها ۵ درصد از کل جهان را تشکیل داده است. این ماده شامل کوارکها که تشکیل دهندهی نوترون و پروتوناند، نوترینوها، آنتی نوترینوها و ذرات دیگر است که همه و همه در مدل استاندارد ذرات بنیادی به زیبایی کنار هم نشستهاند.
پس از موفقیتهای مکانیک کوانتومی، مثل هر نظریهی دیگری، معایبش هم آشکار شد و یکی از آن عیبها، ناتوانی مکانیک کوانتومی در حل مسائلی بود که طی آنها ذره خلق میشد. این موارد ما را به سمت نظریهی میدانهای کوانتومی سوق داد، که ریچارد فاینمن آن را پایه ریزی کرد و رسما دید ما به جهان زیر اتمی تکامل زیبایی یافت. در سالهای اخیر با پیشرفتهای چشمگیر تکنولوژی و علوم مهندسی، بالاخره وجود ذرهی هیگز تایید شد. تابش زمینهی کیهانی هر روز مطالعه میشود. سال گذشته پیشبینی صد سالهی آلبرت اینیشتین تحقق یافت و امواج گرانشی آشکار شدند. پس این طور به نظر میرسد که هر روز بیشتر از روز قبل با طبیعتمان به زبان مشترکی میرسیم. هر روز بیش از قبل زیبایی ریاضیاتمان، و نظریاتی که مینویسیم آشکار میشود.
پرسشهای پیشرو
اما هنوز علامت سوالهای بزرگی در پیش است. مادهی تاریک واقعا چیست؟ انرژی تاریک چیست؟ این دو روی هم رفته ۹۵ درصد از جهان ما را تشکیل میدهند و هنوز برایمان ناشناختهاند. نظریات جدیدمان تا چه اندازه کارآمدند؟ تئوری ریسمان، نظریهی ابرتقارن، گرانش تعمیم یافته، کیهان شناسی مدرن و … . هر روز بیش از قبل پیشرفت میکنیم و به کشف حقیقت نزدیک میشویم. اما واضح است که در پی اینچنین تلاشی به قدمت عمر ما بر روی این کرهی خاکی، سوالات زیادی حل نشده باقی ماندهاند و این چالش بزرگی پیش روی زیباترین وجه ریاضیات، یعنی فیزیک نظریست.
اوبث اشاره می کرد که تلاش ما برای یافتن حقیقت، در واقع تمام اعتماد به نفسمان را از بین برد . چرا که زمانی ما مرکز جهان بودیم و همه چیز معطوف به ما بود. اما دانشمندان نشان دادند که ما گونهای ناتوان در گوشهای از این جهانیم و روزی تنها خورشیدی که میشناسیم نابودمان خواهد کرد و مولکولهای ما تجزیه خواهد شد و آن روز پایان ماست. این جمله و نگاهش اگرچه از دید یک فیلسوف جالب و قابل تامل است، اما من قویا معتقدم حقیقت، بسیار زیباتر از امنیت ساختگی به وسیلهی توهم است. حقیقت هرچه هست، به ذات خود زیباست و این زیبایی دوچندان میشود وقتی به زبان ریاضی بیان میگردد. این جادوی فیزیک است.
همانگونه که زمانی فاینمن گفت:
«شاعران گفتهاند که علم زیبایی ستاره ها را ضایع میکند، چون که آنها را صرفا کرههایی از اتمها و مولکولهای گاز میدانند. اما من هم میتوانم ستارهها را در آسمان شب کویر ببینم و شکوه و زیباییشان را حس کنم. میتوانم این چرخ فلک را با چشم بزرگ تلسکوپ پالومار تماشا کنم و ببینم که ستاره ها دارند از همدیگر، از نقطه ی آغازی که شاید زمانی سرچشمهی همگیشان بوده است دور میشوند. جستوجو برای فهمیدن این چیزها گمان نمیکنم لطمهای به رمز و راز زیبایی این چرخ فلک بزند. راستی شاعران امروزی چرا حرفی از این چیزها نمیزنند؟ چه جور مردمانی هستند این شاعران که اگر ژوپیتر خدایی در هیئت انسان باشد چه شعر ها که برایش نمیسرایند اما اگر در قالب کرهی عظیم چرخانی از متان و آمونیاک باشد سکوت اختیار میکنند؟»
اگر شما هم به دنبال زیباییهای جهان بینظیرمان هستید، به دنیای ریاضیات خوش آمدید.