به فیزیک چکه کردن آب از سقف خونه تاحالا فکر کردید؟! آب روی پشتبوم به خاطر جاذبه وارد سقف به عنوان یک محیط متخلخل میشه و بعد از طی کردن یک مسیر پر پیچ و خم ممکنه به پایین سقف برسه و در نهایت چکه کنه! این فرایند خیلی شبیه به سازوکار قهوه درست کردنه؛ اونجا آب یا بخار با فشار زیادی از محیطی به اسم پودر قهوه میگذره و در نهایت نوشیدنی قهوه ایجاد میشه. به این پدیده «تراوش» گفته میشه. اگر آب از پشت بوم به داخل اتاق نرسه یا وقتی نوشیدنی قهوه از قهوهساز خارج نشه اصطلاحا میگیم تراویدن موفقیتآمیز نبوده و تراوش انجام نشده. ساز و کار تراوش به عنوان یک مسئله گذارفاز پیوسته، از نظر فیزیک پدیدههای بحرانی خیلی جالبه. خصوصا وقتی که تراوش جهتدار باشه. مثلا اگه آب فقط بتونه از بالا به پایین بره، تراوش فقط در یک جهت خاص انجام میشه.
مدل تراوش جهتدار سادهترین مدلیه که گذار فاز پیوسته در شرایط دور از تعادل رو نشون میده.
با این که مدل تراوش جهتدار (directed percolation) خیلی ساده به نظر میرسه و بیشتر از ۶۰ سال از مطرح شدنش میگذره، اما این مسئله روی اکثر شبکهها حل تحلیلی نداره. همینطور تا امروز شواهد بسیار محدود در شرایط بسیار کنترل شدهی آزمایشگاهی برای این پدیده داشتیم. یعنی تا همین چندسال پیش تردید وجود داشت که آیا این مدل فقط یک مسئله انتزاعی ریاضیه یا اینکه واقعا در طبیعت تراوش جهتدار رخ میده؟! خلاصه کلی خون دل خورده شده برای قسمت تجربی ماجرا تا این چیزها رو مردم در آزمایشگاه هم ببینند! مثلا اخیرا یک گروه ژاپنی-فرانسوی این پدیده رو در بلورهای مایع (electrohydrodynamic convection of liquid crystal) مشاهده کردن.
ما در مقاله جدیدمون نشون دادیم که اتفاقا این پدیده زیاد در طبیعت رخ میده؛ فَارْجِعِ الْبَصَر! در واقع نشون دادیم که گذار فاز در مسئله دسترسی (reachability) در شبکههای زمانی، تحت شرایطی نگاشت میشه به مسئله تراوش جهتدار و گذار فاز دسترسی عضو کلاس عمومی تراوشجهتداره. میکّو جزئیات فنی بیشتری در این رشته توییت نوشته.
میتونید این مقاله از مجموعه کارهای ما روی پدیدههای بحرانی در شبکههای زمانی رو اینجا ببینید. همکار ما در این پروژه مارتن کارزای از CEU بود و آرش بدیع-مدیری زحمت اصلی این پروژه رو کشیده. این کار از جهتهای مختلف برای من هیجانانگیزه: هم فیزیک داره، هم ریاضی و هم شبیهسازیهای بسیار بسیار بزرگ! هم فاله و هم تماشا! از همه مهمتر اینکه هر کس که برای اولین بار به این مسئله فکر کنه ممکنه به این نتیجه برسه که خب این مسئله کاملا بدیهی به نظر میرسه! شما چیو نشون دادین پس؟! اما اولا اونقدرا که مردم تصور میکنن بدیهی نیست (همون طور که بحث کردیم در مقاله) و از اون مهمتر بالاخره بعد از مدتها حدس و گمان باید تکلیف این مسئله روشن میشد و گروهی نشون میدادن که وضعیت آگاهی ما از این مسئله در شرایط و تنظیمات مختلف چیه.
این ویدیو در مورد کار پژوهشی من یعنی پدیدههای بحرانی و شبکههای پیچیده است. اینجا میگم که چی شد که به این موضوع علاقهمند شدم و الان مشغول چه کاری هستم:
حدود۳۳۰ سال پیش، نیوتون با انتشار شاهکار خود، اصول ریاضی فلسفه طبیعی، نگاهی جدید نسبت به بررسی طبیعت را معرفی کرد. نگاه نیوتون به علم به کمک نظریه الکترومغناطیس که توسط مکسول جمع بندی و در نهایت توسط آلبرت اینشتین کامل شد، شالوده فیزیککلاسیک را بنا نهاد. انقلاب بعدی علم، توسط مکانیک کوانتومی رخداد. آنچه که مکانیک کوانتومی در قرن ۲۰ میلادی نشانه گرفت، مسئله موضعیت در فیزیک کلاسیک و نگاه احتمالاتی به طبیعت بود. نگاهی که سرانجام منجر به پارادایمی جدید در علم، به عنوان فیزیک مدرن شد. با این وجود، علیرغم پیشرفتهای خارقالعاده در فیزیک و سایر علوم، کماکان در توجیه بسیاری از پدیدهها ناتوان ماندهایم. پدیدههایی که همیشه اطرافمان حاضر بودهاند ولی هیچموقع قادر به توجیه رفتار آنها نبودهایم. بنابراین، میتوان به این فکر کرد که شاید در نگاه ما به طبیعت و مسائل علمی، نقصی وجود داشته باشد. به دیگر سخن، بعید نیست که مجددا نیاز به بازنگری در نگاهمان به طبیعت (تغییر پارادایم) داشته باشیم؛ عدهی زیادی معتقدند آنچه که در قرن ۲۱ام نیاز است، نگاهی جدید به مبانی علم است؛ نگاه پیچیدگی!
گاهی گفته میشود که ایده پیچیدگی، بخشی از چهارچوب اتحاد بخشی برای علم و انقلابی در فهم ما از سیستمهایی مانند مغز انسان یا اقتصاد جهانی است که رفتار آنها بهسختی قابل پیشبینی و کنترل است. به همین خاطر، سوالی مطرح میشود؛ آیا چیزی به عنوان «علم پیچیدگی» وجود دارد یا اینکه پیچیدگی متناظر با هر شاخهای از علم، دارای شیوه خاص خود است و مردم در رشتههای مختلف مشغول سر و کله زدن با سیستمهای پیچیده زمینه کاری خود هستند؟! به عبارت دیگر، آیا یک پدیده طبیعی مجرد به اسم پیچیدگی، به عنوان بخشی از یک نظریه خاص علمی در سیستمهای متنوع فیزیکی (شامل موجودات زنده) وجود دارد یا اینکه ممکن است سیستمهای پیچده گوناگونی بدون هیچ وجه مشترک وجود داشته باشند؟! بنابراین، مهمترین سوالی که در زمینه پیچیدگی میتوانیم بپرسیم این است که، به راستی پیچیدگی چیست؟ و در صورت وجود پاسخ مناسب به این پرسش، به دنبال این باشیم که آیا برای تمام علوم یک نوع پیچیدگی وجود دارد یا اینکه پیچیدگی وابسته به حوزه مورد مطالعه است!
در مورد تعریف پیچیدگی، هنوز اتفاق نظری بین متخصصان یک رشته خاص، مانند فیزیک، وجود ندارد، چه برسد به تعاریفی که در رشتههای متنوع مطرح میشود. این تعاریف در ادامه نقد و بررسی میشوند. با این وجود، مشترکات زیادی در بین تعاریف موجود وجود دارد که برای شروع بحث، مرور آنها خالی از لطف نیست:
برای ما، پیچیدگی به معنای وجود ساختار به همراه تغییرات است. (۱)
از یک جهت، سیستمپیچیده، سیستمی است که تحول آن شدیدا به شرایط اولیه و یا اختلالهای کوچک حساس است. سیستمی شامل تعداد زیادی قسمتِ مستقلِ درحالِ برهمکنش با یکدیگر که میتواند مسیرهای مختلفی برای تحولش را بپیماید. توصیف تحلیلی چنین سیستمی قاعتدا نیاز به معادلات دیفرانسیل غیرخطی دارد. از جهت دیگر، میتوانیم نگاهی غیررسمی داشته باشیم، به این معنا که اگر بخواهیم قضاوتی داشته باشیم، سیستم «بغرنج (complicated) » است و قابلیت اینکه دقیقا به طور تحلیلی یا نوع دیگری توصیف شود وجود نداشته باشد.(۲)
به طور کلی، صفت «پیچیده»، سیستم و یا مولفهای را توصیف میکند که فهم یا تغییر طراحی و/یا عملکرد آن دشوار باشد. پیچیدگی توسط عواملی چون تعداد مولفههای سازنده و روابط غیربدیهی بین آنها، تعداد و روابط غیربدیهی شاخههای شرطی، میزان تودرتو بودن و نوع ساختمان داده است. (۳)
نظریه پیچیدگی بیان میکند که جمعیت زیادی از اجزا، میتوانند به سمت تودهها خودسازماندهی کنند و منجر به ایجاد الگو، ذخیره اطلاعات و مشارکت در تصمیمگیری جمعی شوند. (۴)
پیچیدگی در الگوهای طبیعی نمایانگر دو مشخصه کلیدی است؛ الگوهای طبیعی حاصل از پردازشهای غیرخطی، آنهایی که ویژگیهای محیطی که در آن عمل میکنند یا شدیدا جفتشدهاند را اصلاح میکنند و الگوهای طبیعی که در سیستمهایی شکل میگیرند که یا باز هستند یا توسط تبادل انرژی، تکانه، ماده یا اطلاعات توسط مرزها از تعادل خارج شدهاند. (۵)
یک سیستم پیچیده، دقیقا سیستمی است که برهمکنشهای چندگانهای بین عناصر متفاوت آن وجود دارد. (۶)
سیستمهای پیچیده، سیستمهایی با تعداد اعضای بالایی هستند که نسبت به الگوهایی که اعضای آن میسازند، سازگار میشوند یا واکنش نشان میدهند. (۷)
در سالهای اخیر، جامعه علمی، عبارت کلیدی «سیستم پیچیده» را برای توصیف پدیدهها، ساختار، تجمعها، موجودات زنده و مسائلی که چنین موضوع مشترکی دارند را مطرح کرده است: ۱) آنها ذاتا بغرنج و تودرتو هستند. ۲) آنها به ندرت کاملا تعینی هستند. ۳) مدلهای ریاضی این گونه سیستمها معمولا پیچیده و شامل رفتار غیرخطی، بدوضع (ill-posed) یا آشوبناک هستند. ۴) این سیستمها متمایل به بروز رفتارهای غیرمنتظره (رفتارهاری ظهوریافته) هستند. (۸)
پیچیدگی زمانی آغاز میشود که علیت نقض میشود! (۹)
در مورد تعاریف فوق ابهاماتی وجود دارد؛ در (۱) باید ساختار و تغییرات را به درستی و دقت معنا کنیم. در (۲) باید به دنبال تلفیق سیستمهای پیچده و مفاهیمی چون غیرخطی، آشوبناک و بسذرهای بودن باشیم و به درستی مشخص کنیم که آیا این ویژگیها شرط لازم / کافی برای یک سیستم پیچیده هستند یا نه. (۳) و (۴) مفاهیم محاسباتی و موضوعاتی از علم کامپیوتر را مطرح میکند که به خودیخود مسائل چالشبرانگیزی هستند! (۵) ایده مرکزی غیرخطی بودن را مطرح میکند؛ در ادامه میبینیم با این که تعداد زیادی از سیستمهای پیچیده از ویژگی غیرخطی بودن تبعیت میکنند، با این وجود غیرخطی بودن نه شرط لازم و نه شرط کافی برای پیچیدگی است. در مورد (۶) و (۷) نیز باید تاکید کنیم که بسذرهای بودن و شامل اعضا/عناصر/مولفه/افراد زیادی بودن نیز شرط کافی برای پیچیدگی نیست. در ادامه خواهیم دید، تعریف (۸) که ایدهی پدیدارگی (ظهوریافتگی یا برآمدگی: Emergence) را مطرح میکند میتواند مفهومی بسیار گیجکننده باشد برای اینکه به کمک آن بتوانیم سیستمهای پیچیده را تمیز و تشخیص دهیم. در مورد تعریف (۹) باید بحث زیادی کنیم چرا که افراد زیادی در برابر نقص علیت ناراحت خواهند شد! به همین دلیل است که گاهی درک سیستمهای پیچیده برای مردم دشوار است. بنابراین با توجه به ابهامات تعاریف افراد مختلف در حوزههای گوناگون علم، بهتر از است که مفاهیم وابسته به پیچیدگی را بررسی کنیم.
یه گذار روزمره مثل تغییر فاز آب رو در نظر بگیرید. گاز و مایع به واقع شبیه هم هستن! هر دو از نظر ما بی نظم هستن! حالا یکی یه کم بیشتر یکی یه کم کمتر. اما هیچ کدوم جامد منظم نیستن که همه سرجاشون نشسته باشن. مثال دیگه مواد مغناطیسی است. اینا توشون کلی ذره دارن که هر کدوم یک جهتی داره برای خودش- به زبان فنی اسپین. حالا دما خیلی زیاد باشه مادهمون که مغناطیسی نیست! یعنی مثلن آهن مذاب در دمای بالا براش سخته منظم باشه، به هم ریخته است. پس اون جهتها همه تصادفی اند و بالطبع متوسطشون صفر و ماده مغناطیسی نیست! اما اگر دما پائین بیاد اوضاع عوض میشه، اینا میتونن یه جهت خاص رو بگیرن. به این میگن شکست خود به خودی تقارن!
مردم با همین میخ و چکش سراغ هر تغییر فازی میرفتن و سربلند بیرون میاومدن. اما یهو آقای فونکیلیتزینگ یه چیز جالب دید: اگر یه مشت الکترون رو به دوبُعد محدود کنید، و بَعد میدان مغناطیسی روشن کنی (این همون روشی است که باهاش فهمیدن حامل بار، بارش منفی است) رسانندگی (همون جریان به ولتاژ با یک مشت ضریب) بهت یک سری عدد میده:۱ و۲ و۳ و … بعدتر عددهای کسری عجیب اما خاصی هم پیدا شدن. اما این طور نیست که شما بگی ۱۷.۳۰۸ بعد ما بهت بگیم آهان، میدان فلان رسانندگی اینه که تو می خوای! اعداد طبیعی یا کسری خاص! هرکی به هرکی نیست!
خب مردم هی دست به دهان بودن که چه طور میشه وسط این همه خطای آزمایش و کثیفی نمونه و غیره این اعداد این قدر خاص باشن؟! چرا این همه چیز پیوسته عوض میشه اما اینا نه؟!!
خب بالطبع اول سعی کردن که همون میخ و چکش رو استفاده کنن. اما این درب بسته بود. اما جناب تاولز و همکاراش نشون دادن که میشه اون اعداد رو محاسبه کرد. اینکه اون اعداد واقعن در اون مساله که بالا گفتم (اثر کوانتومی هال ) از کجا و چطور به دست میاد، رو کاریش نداریم، اما میشه یه مثال ساده زد؛ یک خم بستهی دلخواه روی صفحه بکشید. بعد ببینید این خم چند بار مبدا رو دور زده؟! فرض کنید حالا یه میله ی بزرگ دارید و این خم شما در واقع یک ریسمان است. شما اون عدد (winding number) ریسمان رو مگر با بُریدن ریسمان نمی تونید تغییر بدید.
از سوی دیگه اون عدد همیشه یک عدد طبیعی است: ۰ و ۱ و غیره. حالا در اون دنیا این ریسمان چیز عجیب غریب تری است!
ولی خب کلیت داستان همین است. یعنی یک عددی هست که اتفاقن در برخی موارد همین تعداد دور زدنهای یک خم بسته حول مبدا است و جز با بُریدن نمیشه تغییرش داد. این بُریدنها در واقع در دنیای جدید به معنای همون گذار فاز هستن، انگار که مایع میشد جامد! اینجا هم وقتی ریسمان مربوطه بُریده شد و دوباره بسته شد عدد میتونه تغییر کنه! به زبان فنیتر در واقع این عدد تا زمانی که سیستم گاف انرژی داشته باشه نمیتونه تغییر کنه، و اگر گاف بسته و دوباره باز بشه(مثلن با تغییر یک کمیت مثل میدان مغناطیسی) عدد مورد نظر ما میتونه عوض بشه. به خاطر این خواص خیلی سفت و سختش هست که بهش میگن توپولوژیک!پس مساله ی اول حل شد 🙂 تاولز تونست با همکاراش نشون بده که اون اعداد از کجا میان. البته بگم اعداد کسری هنوز حل نشده هستن! خب این حالتهای ماده و این تغییر اعداد، این تغییر نظم(!!!) با یک سری عدد توصیف میشه و توپولوژی!
حالا یک چییز دیگه: همون اسپینها رو در نظر بگیرید. حالا فرض کنید دو بُعد داریم. میشه حالتی رو تصور کرد که همهی اسپینهایی که دورمبدا هستن به سمت خارج هستن! عین خطوط میدان یک بار الکتریکی! اصلن همین مثال خوبه! شما می گید ئه!! همه به سمت بیرون هستن پس باید یه چیزی اونجا باشه! حالا اینجا نمی گیم بار، میگیم گردابه! و به جای مقدار بار همون winding number . آقای تاولز و کاسترلیتز نشون دادن که در دو بُعد جز اون حالت بی نظم که همه می دونستن باید اونجا باشه میشه حالاتی داشت که مثلن دو تا گردابه داشته باشه! پس دوباره سرو کله ی این اعداد طبیعی و توپولوژی و فازها پیدا شدن! این بار شما میتونید چند تا گردابه داشته باشید، مضاف بر اون هرگردابه یک عددبرای خودش داره که شبیه به همون بار است! این گردابهها و این نوع تغییر فاز در ابرشارهی هلیوم دیده شد!
اما جناب هالدین! اون گاز الکترونی و میدان مغناطیسی رو که بالا گفتم در نظر بگیرید! اونا مثلن یه ویژگی خیلی جالب که دارن این است که جریان الکتریکی از روی لبهها حرکت میکنه! و خب رسانندگی ش هم اون اعداد خاص رو میده! تا مدت ها مردم فکر می کردن که خب میدان مغناطیسی قوی خیلی مهمه!اما هالدین در یکی از کارهاش یک مدل تئوری ساخت که بدون شار مغناطیسی خالص همون خواص رو داشت! این مدل دو سال پیش در آزمایشگاه realize شد! پس همه فهمیدن چیزای مهمتری تا میدان مغناطیسی هست! در واقع این بنیان کاری است که در سال ۲۰۰۶، Kane و Mele روی گرافین کردن و عایقهای توپولوژیک رو باز کردن. اینها موادی هستند که علیرغم اینکه نارسانا هستند، یعین در حجمشون گاف هست و رسانش نمیتونیم داشته باشیم، روی مرزهاشون میتونن رسانش داشته باشن! برای همین است که میگن عایق توپولوژیک! عایق trivial میشه همون عایق معمولی، نه تو حجم و نه تو سطح رسانش نداره! اما توپولوژیکها روی سطح رسانش دارن!
اما هالدین کارهایی رو هم روی مدلهای اسپینی کرده که تاثیر گذاشت روی چیزی که الآن بهش میگن symmetry protected topological phase. هالدین مدلهایی رو نگاه کرد که مردم پیش از او هم بررسی کرده بودن! همه فکر میکردن این مدلهای اسپینی Gapless هستن، یعنی با کمی انرژی میتونید توش برانگیختگی درست کنید! این در واقع برای اسپین ۱/۲ نشون داده بودن و فکر می کردن برای اسپینهای بالاتر هم درسته! اما هالدین نشون داد که برای اسپینهای صحیح مثل ۱ باید دقت کرد و چیزهای دیگهای هم هست که باعث میشن سیستم گاف انرژی داشته باشه! این سیستمها و این خواص هم توپولوژیک هستن و به این راحتی از بین نمیرن اما همونطور که از اسمشون برمیاد یک تقارنی رو لازم دارن، مثلن دوران! یعنی اون خواص توپولوژیک هستند مادامی که شما اون تقارن رو حفظ کنی!
گذار کاسترلیتز تاولز رو تو کتاب کاردر خوب توضیح داده. اینا هم یه سری مقاله در مورد کارهای توپولوژیک و اثر هال:
ماجرا از اینجا شروع میشه که ما همهجا با تقارن سروکار داریم. از ساختار بدن خودمون گرفته تا اشکالی که توی طبیعت هست، معماریهای قدیمی و مدرن،فرش زیرپامون، وسایلی مثل تلفن همراه و … . تقارن توی هنر ارزش خاصی داره مخصوصا توی هنر اسلامی. اکثر مساجد درون و بیرونشون کاملا متقارن ساخته میشه! پپیشنهاد میکنم نوشتهی «گفتگو با استاد» از کتاب «اطاق آبی» سهراب سپهری رو بخونید! توی این نوشته، سپهری در مورد تقارن در نقاشی با یکی از اساتیدش بحث میکنه.
توی ریاضیات و فیزیک هم تقارن اهمیت خاصی داره، یکی از کارهای فیزیکدانها پیدا کردن تقارنه! هر چند که شکستن تقارن هم خودش یه موضوع خیلی جالب و چالشی هست ولی موضوع این پست نیست. همینطور برای فیزیکدانها اهمیت داره که بدونند که چه چیزهایی ثابت هستند و به بیان بهتر، فیزیکدانها دوست دارند بدونند که چه کمیتهایی پایسته (پایستار) هستند. حتما اسم قانونهایی مثل پایستگی انرژی به گوشتون خورده حتی اگر اهل فیزیک نباشید!
حالا با این مقدمهای که گفتم فکر کنید که یک نفر پیدا بشه و «تقارن» و «پایستگی» کمیتها رو به هم متصل کنه! چه اتفاق فرخندهای خواهد شد! این کار رو خانم امی نودر ریاضیدان تاثیرگزار آلمانی در سال ۱۹۱۵ انجام داد، چیزی که به عنوان قضیهی اول نودر امروز فیزیکدانها میشناسندش. سال ۱۹۱۵ دیوید هیلبرت و فلیکس کلاین از نودر دعوت کردند تا به دانشکدهی ریاضی دانشگاه گوتینگن بیاد و به اونها توی فهم نسبیت عام که توسط اینشتین مطرح شده بود کمک کنه.
همینطور که میدونید نسبیتعام یک نظریهی هندسی از گرانشه و بعضیها بر این باورند که اگر اینشتین نسبیتعام رو کشف نمیکرد، حتما توسط آدمهایی مثل هیلبرت و امثال هیلبرت این نظریه کشف میشد؛ با این وجود ریاضیدانها، فیزیک نمیدونستند و سرانجام افتخار این کشف به آینشتاین رسید! دعوت از نودر حاشیههای زیادی هم به همراه داشت، از جمله اینکه در اون زمان حضور زنها در دانشگاه مخالفان زیادی داشت ولی هیلبرت محکم جلوی این طرز تفکر نادرست ایستاد و از نودر به خوبی حمایت کرد! قضیه نودر، سال ۱۹۱۵ بیان و اثبات شد ولی نودر تا سال ۱۹۱۸ از انتشار اون خودداری کرد. بعد از این که کار نودر به دست اینشتین رسید، اینشتین نامهای به هیلبرت مینویسه و توی اون میگه:«دیروز مقالهای بسیار جالب در مورد ناوردایی از خانم نودر دریافت کردم. من از اینکه این چیزها با این کلیت قابل فهم هستند تحت تاثیر قرار گرفتهام! پاسداران قدیمی گوتینگن باید از خانم نودر درس بگیرند، به نظر میرسد که او کارش را بلد است!» جالبه که بدونید آدمهایی از جمله اینشتین، نودر رو مهمترین خانم در تاریخ ریاضیات خطاب کرده اند!
قضیه نودر بیان میکنه که:
«برای هر تقارن (پیوسته)موجود در یک سامانه، یک کمیت پایستار وجود دارد.»
این قضیه منجر به این شد که دو مقولهی ظاهرا متفاوت بهم متصل بشند و نتیجهی این وصلت هم، وصل شدن فیزیک نظری به سیستمهای دینامیکی و بالعکس شد. این قضیه یک ابزار بسیار قدرتمند برای فیزیک وحساب وردشهاست و در مکانیک لاگرانژی و همیلتونی (که فرمالیسمی مشابه با مکانیک نیوتونی هستند) کاربرد اساسی داره. در حقیقت واژهی «تقارن» در صورت قضیه به طور دقیقتری، اشاره میکنه به هموردایی فورمی که یک قانون فیزیکی نسبت به تبدلات گروه لی دریک بعد (با ارضا کردن شرایط فنی) داره. بد نیست بدونید که معمولا قانون پایستگی برای هر کمیت فیزیکی با یک معادلهی پیوستگی بیان میشه که خب مجال توضیحش توی این پست نیست! تغییر نکردن یک کمیت در اثر تحول سیستم (ناوردا باقی موندن) به معنی پایستگی اون کمیت هست و به بیان ریاضی اگر تغییرات یک کمیت نسب به زمان صفر باشه. اون کمیت ثابته: \( dA/dt =0 \)
اجازه بدید کمی تخصصی تر حرف بزنیم:
توی فرمالیسم مکانیک لاگرانژی برای سادگی بیشتر از مختصات تعمیم یافته استفاده میشه. اگر با مختصات تعمیمیافته آشنا نیستید نگران نباشید، ایدهی ساده ولی کاربردی هست، توی اکثر کتابهای درسی مکانیک کلاسیک (مکانیک تحلیلی) در موردش بحث شده؛ در حالت کلی مختصات تعمیم یافته، میتونند چیزهایی غیر از x,y,z باشند، مثلا زاویه! بعد از مشخص شدن مختصات تعمیم یافته، لاگرانژی به صورت اختلاف انرژی جنبشی و پتاسیل سامانه به صورت \(L=T-V , L=L(q,p, t) \) مشخص میشه. لاگرانژی تابعی از مختصات تعمیم یافته(q)، تکانهی تعمیم یافته (p) ( تکانه تعمیم یافته مشتق زمانی مختصات تعمیم یافته است) و احیانا زمان هم هست. با استفاده از لاگرانژی و استفاده از معادلهی اویلر-لاگرانژ میتونیم به راحتی معادلات حرکت رو به دست بیاریم.
منظور از qنقطه همون مشتق زمانی q یا تکانه تعمیم یافته (p) هست. اندیس k یعنی kامین مختصهی تعمیم یافته و… . حالا اگر تغییرات لاگرانژی نسبت به یکی از اون مختصات تعمیم یافته صفر باشه، یعنی طرف راست معادله صفر باشه ، اونموقع طرف چپ معادله هم صفر میشه و این یعنی تغییرات لاگرانژی نسبت به تکانهی تعمیم یافته ثابته!
خب حالا این یعنی چی؟!
مثال۱)فرض کنید که شما یک توپی رو به هوا پرتاب میکنید، مختصات تعمیم یافته توی این حالت، همون x,y,z در دستگاه دکارتی هست. برای این توپ لاگرانژی به صورت زیر نوشته میشه:همون جوری که میبینید توی این لاگرانژی خبری از y , x نیست! پس مشتق L نسبت به y یا x صفر هست که نتیجهش ثابت بودن مشتق L نسبت yنقطه (سرعت در جهت y) و xنقطه (سرعت در جهت x) هست. با حل معادله اویلر-لاگرانژ (حل کنید!) به این میرسیم که تکانه در جهت x , y ثابته: توی این مثال دیدیم که تکانه (حاصلضرب m در xنقطه یا yنقطه) در دو جهت پایسته بود و در صورت لزوم میتونیم از قانون پایستگی تکانه هم استفاده کنیم!
مثال۲)فرض کنید که یک ذره در پتانسیلی باشه که فقط به فاصلهش از محور z ها وابسته است، اونموقع اگر لاگرانژی رو در دستگاه مختصات استوانهای بنویسیم، خواهیم داشت: میبینید که توی لاگرانژی خبر از z و θ نیست. دوباره با حل معادله اویلر لاگرانژ به این نتیجه میرسیم که تکانه در جهت z و θ پایسته است که این به معنی ثابت بودن تکانهی خطی در جهت z و پایستگی تکانهی زاویهای در جهت θ هست.
خب ما توی این دو تا مثال به پایستگی دو کمیت به نامهای تکانهی خطی و تکانهی زوایهای رسیدیم. طبق قضیهی نودر چیزی که این کمیتهای پایسته رو بهوجود اورده، چیزی نیست جز تقارن! توی مثال اول تقارن توی صفحهی xy (صفحهی موازی سطح زمین)وجود داشت. یعنی اینکه فرقی نمیکرد که توپ ما در کجای این صفحه بود، مهم این بود که چقدر از زمین بالا یا پایین باشه، به عبارت دیگه تقارنی که در انتقال توپ ما در صفحه xy (یا در جهت x و جهت y) وجود داشت سبب پایستگی تکانهی خطی در جهت x,y شد! توی مثال دوم هم تنها چیزی که اهمیت داشت انتقال در جهت r یا همون جابه جایی از محور z بود و این اصلا مهم نبود که شما در جهت z یا در جهت θ انتقال یا جابهجایی انجام بدین. بنابراین به خاطر تقارن موجود در انتقال در جهت z ، پایستگی تکانهی خطی در جهت z و به خاطر تقارنی که در جهت θ بود پایستگی تکانهی زاویهای در جهت θ داشتیم. یعنی با استفاده از قضیه نودر،بدون حل معادله اویلر-لاگرانژ،میتونستیم کمیتهای پایسته رو از روی لاگرانژی تشخیص بدیم.
به طور خلاصه میتونیم این جدول رو داشته باشیم:
تقارن در زمان یعنی اینکه اگر رفتار سامانهی ما مستقل از زمان باشه به این معنی که هرچقدر زمان بگذره سیستم تغییر نکنه، اون موقع انرژی برای اون ثابت و پایسته است. برای مثال، وقتی شما نوسانگری که درخلا در حال نوسان با دورهی تناوب T هست رو امروز میبیند و دوباره فردا هم با همون دوره تناوب میبینیدش، یعنی اینکه انرژی برای این نوسانگر پایسته است!
خیلی چیزها خلاصه میشه توی همین قضیه! زمین گرده چون که بیشترین تقارن رو کره داره و این گردی سبب میشه که تکانهی زاویه ای حفظ بشه! همین طور مدار سیاره ها و …
خب در انتها جا داره که یک بار دیگه درود بفرستیم به امی نودر!
برای عمیقتر شدن نگاهی داشته باشید به این نوشته از وبلاگ تائو: