رفتن به نوشته‌ها

برچسب: توزیع درجه

انتروپی

انتروپی یکی از سهل ممتنع‌ترین مفاهیم فیزیکه. همه فکر می‌کنند که می‌دونند چیه و همه هم‌زمان درست نمی‌دونند که چیه! مسئله انتروپی و پیکان زمان هنوز جزو مسائل حل نشده در فیزیکه. قانون دوم ترمودینامیک ارتباط تنگاتنگی با این مفهوم داره و از قضا این قانون، جای پای خیلی محکمی توی فیزیک داره. برای همین انتظار می‌ره که بدونیم انتروپی چیه، نه؟! بعضی‌ها به اشتباه قانون دوم رو تفسیر به زیاد شدن بی‌نظمی می‌کنن که لزوما درست نیست.

انتروپی یک کمیت قابل اندازه‌گیری و یک متغیر جفت‌شده (همیوغ) برای دما در ترمودینامیکه. از طرف دیگه، به واسطه توسعه مکانیک آماری، تعریف‌های جدیدتر با فرمول‌بندی‌هایی بر اساس توزیع‌های آماری برای بیان انتروپی یک سامانه بر اساس حالت‌هایی که می‌تونه داشته باشه ارائه شده. وصل کردن فیزیک آماری به نظریه اطلاعات معمولا با کارهای جینز شناخته میشه. اما از لحاظ مفهومی و فلسفه علمی، آزمایش فکری شیطانک مکسول برای اولین بار این درک رو ایجاد کرد که اطلاعات یک کمیت فیزیکیه.

Leonard Susskind, Statistical Mechanics (Spring, 2013), Lec. 7: Entropy vs. reversibility
Leonard Susskind

I will try to explain the second law to the best of my ability. There should be lots of questions which I will try to answer. I know a little bit about the second law; it may be two or three people in the world who know more, but I’ve never met any, so we’ll talk a little about the second law [and] what it means

Leonard Susskind, Statistical Mechanics (Spring, 2013), Lec. 7: Entropy vs. reversibility

دنبال کردن تغییرات انتروپی به صورت نظری یا تجربی در فیزیک تعادلی و غیرتعادلی متفاوته. برخلاف انتظار ما، اندازه‌گیری تغییرات انتروپی در تعادل می‌تونه کار خیلی سختی در آزمایشگاه باشه. در فیزیک دور از تعادل، روابط افت‌وخیز چارچوب به نسبت معقولی برای مطالعه انتروپی به ما میده.

انتروپی برای همگردی (ensemble) از چیزها معنی داره. انتروپی یک مولکول چندان چیز معنا داری نیست، بلکه انتروپی‌حالت‌هایی که یک مولکول می‌تونه داشته باشه عبارت معنی داریه. با نگاه کردن به فرمول شنون هم خیلی راحت میشه دید که برای یک توزیع خاص میشه انتروپی تعریف کرد. مثال دیگه، که یک مثال فیزیکی نیست، صحبت کردن در مورد انتروپی شبکه‌های پیچیده است. انتروپی یک شبکه می‌تونه منجر به گمراهی مخاطب بشه. چون مشخص نیست که این انتروپی به توزیع درجه اون شبکه برمی‌گرده یا همگردی از گراف‌ها یا چی!؟ مثلا قاعده انتروپی بیشینه برای همگردی از گراف‌ها با چگالی یال ثابت منجر به مدل اردوش رنیی میشه. این مدل، شبکه‌ای با توزیع درجه پواسونی میده که اون توزیع، توزیع بیشترین انتروپی نیست!

نکته بعدی اینه که انتروپی یک کمیت فردیه (subjective) به این معنا که ربطی به قوانین بنیادی طبیعت و برهمکنش ذرات با هم نداره. معمولا کسایی که بعد از گذروندن درس مکانیک کلاسیک وارد درس مکانیک آماری تعادلی میشن با این سوال رو به رو میشن که طبق تعریف، لگاریتم حجم فضای فاز (در یک انرژی خاص) برابر با انتروپیه. از طرف دیگه قضیه لیوویل می‌گه که برای یک سامانه طی زمان، هندسه فضای فاز عوض میشه ولی حجمش نه! پس یعنی انتروپی ثابت می‌مونه! آیا این مشکلی داره؟! اول اینکه قانون دوم ترمودینامیک میگه که انتروپی یک سامانه بسته در حد ترمودینامیکی تقریبا هیچ‌موقع کم نمیشه، یعنی $\mathrm{d}s$ یا صفره یا مثبت. پس کی $\mathrm{d}s>0$ هست؟ ایده اصلی اینه که انتروپی یک کمیت وابسته به سامانه و ناظره. در واقع انتروپی رو طی فرایند درشت‌-دانه‌‌بندی اندازه‌گیری می‌کنیم و این ما (ناظر) هستیم که انتروپی رو زیاد می‌کنیم!

خلاصه خیلی مهمه که در چه شرایطی و برای چه سامانه‌ای (اندازه و نوع برهمکنش‌ها) داریم صحبت می‌کنیم. انتروپی می‌تونه خیلی خیلی موضوع ظریفی باشه خصوصا وقتی که دور از تعادل هستیم. در سامانه‌های کوچیک مثلا انتروپی می‌تونه کم یا زیاد بشه. برای دونستن بیشتر به اینجا و اینجا نگاه کنید.

برای مطالعه بیشتر:

گشت و گذاری در علم شبکه

به دعوت بچه‌های انجمن علمی فیزیک دانشگاه تهران در مورد شبکه‌های پیچیده حرف زدم. ویدیو جلسات ضبط شده. در ادامه اسلایدها رو گذاشتم.

قسمت اول: پیچیدگی و تحول انگاره

در این قسمت ابتدا به سراغ انگاره پیچیدگی می‌رویم و پیرامون تحول انگاره در فیزیک در دهه‌های گذشته صحبت می‌کنیم. نشان می‌دهیم که فیزیک آماری در گذار از ریزمقیاس به بزرگ‌مقیاس با چه چالش‌هایی روبه‌رو بوده. سپس به دنبال توجیه رفتارهای جمعی در سیستم‌های فیزیکی و زیستی به اهمیت برهمکنش‌های نابدیهی و شبکه‌های پیچیده می‌رسیم.

قسمت دوم: مقدمه‌ای بر علم شبکه

در ادامه قسمت قبل، به دنبال توجیه رفتارهای جمعی در سیستم‌های فیزیکی و زیستی به اهمیت برهمکنش‌های نابدیهی و شبکه‌های پیچیده می‌رسیم و به ویژگی‌‌های این شبکه‌ها و پدیده‌های دینامیکی روی آن‌ها می‌پردازیم. سرانجام در مورد مدل‌سازی‌های انتشار ویروس کرونا صحبت خواهیم کرد!

اسلایدها

مدل باراباشی-آلبرت و تولید شبکه‌های بی‌مقیاس

در پست قبل در مورد بالانس تئوری یا نظریه توازن صحبت کردیم و نشون دادیم که به کمک یک مدل ساده و ابتدایی می‌تونیم به جوامع، متناسب با نوع رابطه‌ی اعضا با همدیگه، انرژی نسبت بدیم و مقدار این انرژی به ما میگه که جامعه مد نظر در چه وضعیتی از توازن قرار داره.

بنابر بهنجارش، اگر انرژی جامعه‌ ۱- به‌دست بیاد، جامعه کاملا متوازن یا بالانس هست که این در صورتی رخ میده که همه اعضای جامعه دوست همدیگه باشند و یا اینکه جامعه دو قطبی بشه، یعنی جامعه به دو زیر مجموعه تقسیم بشه به نحوی که درون زیرمجوعه‌ها اعضا دوست باشند اما هر عضوی از این زیرمجوعه با اعضای زیرمجوعه‌ی مقابل دشمن باشه. همین‌طور اگر انرژی جامعه بیشتر از ۱- به‌دست بیاد یعنی جامعه نامتوازن‌ هست و هر چقدر که انرژی به ۱+ (کران بالای انرژی بنابر بهنجارش) نزدیک‌تر باشه جامعه نامتوازن‌تر هست که به معنی وجود امکان نزاع و درگیری در بین اعضاست.

طی این پست‌ می‌خوایم ببینیم اگر به یک جامعه با شرایط اولیه مشخص (جمعیت و انرژی اولیه)، عضو جدیدی وارد بشه چه اتفاقی می‌افته. اما قبل از اون اجازه بدید که مدل باراباشی-آلبرت رو معرفی کنیم.

همه‌ی ما گزاره‌های این شکلی رو زیاد شنیدم: «پول، پول میاره» یا «ثروتنمندان، ثروتمندتر میشند و فقرا فقیرتر».  بد نیست بدونید که جامعه‌شناسان به این پدیده می‌گند اثر متیو (Matthew Effect). ماجرا از اینجا شروع میشه که درون شبکه‌هایی مثل وب(www)، اینترنت، شبکه استناد (citation networks) و شبکه‌های اجتماعی  اعضایی وجود دارند که علی‌رغم تعداد کمشون، توجه زیادی از شبکه رو به خودشون معطوف می‌کنند.

توزیع قاون‌توانی، قسمت سبز رنگ ۸۰٪ از شبکه را شامل می‌شود و دم‌دراز زرد رنگ ۲۰٪ باقی‌مونده را.
توزیع قانون‌توانی، قسمت سبز رنگ ۸۰٪ از شبکه را شامل می‌شود و دم‌دراز زرد رنگ ۲۰٪ باقی‌مانده را.

به عنوان مثال در بین تمام سایت‌ها گوگل، ویکی‌پدیا و فیس‌بوک بیشترین بازدیدکننده‌ها و پیوندها رو دارند یا مثلا در جامعه‌ی ما، محمدرضا شجریان، حسین علیزاده و کیهان کلهر  جزو برجسته‌ترین هنرمندان موسیقی سنتی هستند، در مقایسه با جمعیت هنرمندان موسیقی، این افراد تعدادشون کمه. با این‌وجود شهرت و محبوبیشون از همه هنرمندان بیشتره. این شبکه‌ها، شبکه‌های بی‌مقیاس (scale-free) هستند به این معنی که توزیع درجه در این شبکه‌ها با تقریب خوبی از یک الگوی قانون‌توانی(power law) پیروی می‌کنه. این چندتا جمله‌ی سخت که گفتم یعنی اینکه وقتی ما این شبکه‌ها رو با یک گراف نمایش می‌دیم، درجه ‌رئوس متناسب با وارون فراوانی(تعداد) اون رئوس هست . یعنی هرچی راسی درجه‌ش بیشتر باشه (تعداد یال‌های بیشتری بهش متصل بشند) فراوانیش کمتره و هر چقدر درجه راسی کم‌تر باشه فراوانیش بیشتره! همون‌جوری که تعداد سایت‌هایی مثل گوگل تعدادشون خیلی کمه، چون درجه‌شون زیاده.

رشد یک شبکه مطابق با مدل باراباشی-آلبرت که در هر مرحله راس جدید به ۲ راس قبلی وصل می‌شود.

کار آلبرت باراباشی و رکا آلبرت معرفی الگوریتمی بود که قادره چنین شبکه‌هایی رو مدل‌سازی کنه. این الگوریتم صرف‌نظر از تصادفی بودن باید گرافی رو تولید کنه که توزیع درجه‌ رئوسش قانون‌توانی باشه. برای همین اساس این مدل دو چیزه:

۱) رشد: در طی زمان رئوس جدیدی به شبکه اضافه می‌شند.

 ۲) اتصال ترجیحی: رئوس جدید ترجیح می‌دند به رئوسی وصل بشند که درجه‌ی بالاتری دارند.

برای همین این الگوریتم ابتدا یک شبکه متصل (همبند) با m_0 راس ایجاد می‌کنه. بعد از اون، در هر مرحله، راسی اضافه می‌شه و به m \le m_0 راس قبلی وصل میشه. این راس بر اساس درجه‌شون انتخاب می‌شند: یعنی احتمال اینکه راس جدید به iامین راس موجود درگراف وصل بشه برابره با نسبت درجه راس iام به مجموع درجات کل رئوس. این سبب میشه که «هاب» در شبکه به‌وجود بیاد. هاب‌ها رئوسی هستند که درجه‌ شون از بقیه رئوس شبکه بیشتره. (صفحه شجریان در اینستاگرام یک هاب به حساب میاد در بین خواننده‌ها همون‌جوری که گوگل یک هابه در بین سایت‌ها!). يادتون باشه که در مدل باراباشی-آلبرت وزن هر یال ۱ است!