در سالی که گذشت ما شش نوشته به شرح زیر منتشر کردیم. امسال عرفان فرهادی به عنوان نویسنده به ما اضافه شد و از این جهت خوشحالیم. با این وجود، از لحاظ کمیت، در این سال کمترین تعداد نوشته و تعدد نویسنده را داشتیم.
به نظر من بهترین نوشتههای این سال، به ترتیب «در تحول امور، از اول کارشناسی تا آخر دکتری» و «ماجرای کشف غولهای یخیِ منظومۀ شمسی» هستند. از مهدی موسوی بابت همراهی همیشگیش و از بابک اسعدی برای حمایت مالی از سیتپور تشکر میکنیم.
آسمان شب همیشه موردِتوجه بشر بوده است و ازجملۀ اولین مواردی که انسانها با رصد مداوم آسمان دریافتند وجود اجرامی در آسمان بود که در میان ستارههای بیشمارِ ثابت حرکت میکردند. این موضوع در میان نوشتههای خطوط میخیِ نگارششده توسط مردم تمدن میانرودان بر روی قدیمیترین لوحهای گلیِ کشفشده کاملاً نمایان است. به عقیدۀ میانرودانیهای باستانی، در آسمان هفت سیاره حضور داشتند که به آنها باهم «بیبو» بهمعنای لغوی «گوسفند سرگردان» گفته میشد: ماه، خورشید و پنج سیارۀ عُطارِد، زهره، مریخ، مشتری و زحل که همگی با چشم غیرمسلّح قابلرؤیت هستند. اما حدود پنجهزار سال طول کشید تا سیارۀ بعدی، یعنی اورانوس کشف شود. همچنین با فاصلۀ زمانی کوتاهی، از وجود نپتون پردهبرداری شد تا درنتیجه، دو سیارۀ دیگر به شمار سیارات باستانی اضافه شود.
در این نوشته، به بهانهٔ سالروز کشف سیارهٔ نپتون در ۲۳ سپتامبر۱۸۴۶، به ماجرای کشف جالب دو سیارۀ اورانوس و نپتون میپردازیم که امروزه آنها را با عنوان غولهای یخیِ منظومۀ شمسی میشناسیم.
اورانوس، سیارهای که هیچگاه به چشم نیامده بود
اورانوس، هفتمین سیارۀ منظومۀ شمسی، در آسمان شب ما با قدر ۵/۳۸ تا ۶/۰۳ ظاهر میشود و این یعنی این سیاره را در یک آسمان تاریک، حتی با چشم غیرمسلّح نیز — هرچند کمی نیاز به تیزبینی دارد — میتوان دید. در واقع در تمام طول هزاران سال تمدن بشری، سیارۀ اورانوس در مقابل دیدگانمان بود، ولی هیچگاه نتوانسته بودیم آن را کشف کنیم؛ تنها حدود ۲۵۰ سال است که اورانوس را رسماً بهعنوان یکی از سیارات منظومۀ شمسی میشناسیم.
شاید مهمترین دلیلِ این تأخیر در کشف اورانوس، جابهجایی بسیار کُند آن در پسزمینۀ ستارگان باشد. از آنجایی که فاصلۀ متوسط اورانوس تا خورشید حدود ۲۰ واحد نجومی است و حدود ۸۴ سال طول میکشد تا یک دور بهدور خورشید بگردد، مقدار جابهجایی آن در پهنۀ آسمان بسیار ناچیز است (از مرتبۀ چند ثانیۀ قوسی در هر شب). همین موضوع باعث شده، علیرغم رصدهایی که قبل از کشف اورانوس از این سیاره ثبت شده است، ماهیت آن پنهان باقی بماند؛ کمااینکه در کاتالوگهای ستارگانی که توسط «جان فلمستید» در ۱۶۹۰ میلادی یا حتی توسط «ابرخُس» در زمان یونان باستان تهیه شده، همیشه بهعنوان یکی از ستارگان (ثوابت) گزارش شده بود. اما زمان گذشت تا آنکه قرعۀ فال بهنام «ویلیام هرشل» زده شد.
جناب هرشل اولین بار در ۱۳ مارس ۱۷۸۱ میلادی با کمک یک تلسکوپ در حیاط خانهاش اورانوس را رصد کرد. ابتدا تصور کرد چیزی که دیده، یک دنبالهدار است؛ چون برخلاف ستارگان که با تغییر بزرگنماییِ تلسکوپ اندازۀ ظاهریشان تغییری نمیکند، این جرم آسمانی اندازهاش تغییر میکرد. اما رفتهرفته، با رصدهای بیشتر توسط منجمان دیگر، نتایج جالبی بهدست آمد؛ مثلاً با محاسبۀ مدار آن، مشخص شد برخلاف دنبالهدارها که در مدارهای بسیار کشیده بهدور خورشید میگردند، مدار جرم جدید ورای مدار سیارۀ زحل و تقریباً بهشکل دایره است. یا اینکه مثلاً هیچ ردّی از یک دنباله در اطراف آن رصد نشد. این شواهد منجر به این شد که هرشل در سال ۱۷۸۳ میلادی رسماً اعلام کند ستارهای که دو سال قبل دیده بود، درواقع یکی از سیارات اصلی منظومۀ شمسی است.
این کشف باعث شد تا جورج سوم، پادشاه وقتِ بریتانیا، حقوقی بهصورت سالیانه بهعنوان پاداش برای ویلیام هرشل در نظر بگیرد. هرشل نیز پیشنهاد داد نام سیارۀ جدید را «ستارۀ جورج» بگذارند؛ با این استدلال که اگر سیارات قبلی همه در زمان باستان کشف شده و نام اساطیر رومیان و یونیان باستان را بر آنها گذاشتهاند، پس این سیاره را نیز بهنام پادشاه جورج بگذاریم تا آیندگان بدانند این سیاره در چه زمانی کشف شده است! البته نامهای دیگری نیز ازجمله «نپتون» و حتی «هرشل» پیشنهاد شد؛ اما همانطور که مشخص است، این سیاره را امروزه بهنام «اورانوس» میشناسیم. این نامی است که «یوهان بودی»، منجم آلمانی، آن را برای اولینبار در سال ۱۷۸۲ پیشنهاد داد و بعدها همهگیر شد.
غولی غول دیگر را صدا میزند
کشف اورانوس بهعنوان یکی از بزرگترین دستاوردهای علمی قرن ۱۸ میلادی، در کانون توجه جامعۀ علمی قرار گرفت و در سالهای بعد، رصدهای مختلفی برای مطالعۀ بیشتر آن انجام شد. «پیِر سیمون لاپلاس» — حل معادلاتی که امروزه بهعنوان معادلات لاپلاس میشناسیم، ازجملۀ کارهای علمی ایشان است — در کتاب مکانیک سماوی خود معادلات ریاضیاتیِ مربوط به اختلالات گرانشی دوطرفهای که سیارات به یکدیگر وارد میکنند را توسعه داده بود. بر همین اساس، میتوان با استفاده از محاسبات عددی، جداولی از موقعیت سیارات در آسمان تنظیم کرد. لاپلاس وظیفۀ استخراج این جداول را که کار کمرشکنی هم بود، به چند نفر از همکارانش سپرد؛ ازجمله یکی از دانشجویان لاپلاس بهنام «آلکسی بوار» که وظیفۀ محاسبۀ جداول موقعیت سه غول منظومۀ شمسی یعنی سیارۀ مشتری، زحل و اورانوس را بر عهده گرفت.
مسئله درمورد مشتری و زحل تقریباً سرراست بود، اما درمورد سیارۀ اورانوس به نظر کار گره خورده بود؛ بوار، حتی با در نظر گرفتن اختلالات گرانشی ناشی از بقیۀ سیارات بر روی اورانوس، نمیتوانست پارامترهای مداریای که با رصدهای قبلیِ انجامشده مطابقت داشته باشد را برای آن پیدا کند. وقتی بوار جداول اورانوس را در سال ۱۸۲۱ منتشر کرد، در مقدمۀ آن نوشت که علت این عدم تطابق میتواند یا بهدلیل دقت پایین رصدهای قبلی باشد، یا وجود یک جرمی که اثرات گرانشی آن بر روی اورانوس این اختلالات اضافی را ایجاد میکند.
رفتهرفته منجمان با رصدهای بیشتر سیارۀ اورانوس، به ایدۀ وجود یک سیارۀ جدیدِ اخلالگر اقبال بیشتری نشان دادند. یکی از افرادی که به این مسئله علاقهمند شده بود «فردریش بسل» بزرگ — فردی که معمولاً با توابع بسل آن را میشناسیم — بود. او وظیفۀ جمعآوری و تحلیل رصدهای اورانوس را به دانشجویش فردریش فلمینگ سپرد؛ اما فلمینگ جوانمرگ شد. خودِ جناب بسل هم پس از تحمل یک دورۀ طولانی بیماری، در سال ۱۸۴۶ میلادی درگذشت و نتوانست در این زمینه اقدام مؤثری انجام دهد. اما درنهایت، دو دانشمند دیگر بهنامهای «جان آدامز» در انگلستان و «اوربن لو وریه» در فرانسه توانستند بهطور مستقل و تقریباً همزمان، پارامترهای مداری سیارۀ جدید را محاسبه و مکان آن را در آسمان پیشبینی کنند.
آدامز در انگلستان توانست با استفاده از معادلات «پیتر هانسن» برای مدار سیارات، پارامترهای مداری سیارۀ اخلالگر را در اکتبر ۱۸۴۵ محاسبه کند؛ اما او در انتشار نتایجش تعلل کرد و همچنین «جیمز چلیس» که مسئول رصد این سیاره در رصدخانۀ کمبریج شده بود، با کمی سهلانگاری، علیرغم مشاهدۀ سیاره، نتوانست آن را تشخیص دهد. در عوض، لو وریه و همکارانش توانستند سیارۀ جدید یعنی «نپتون» را زودتر از تیم انگلیسی کشف کنند.
سیارۀ جدید آنجاست
در سال ۱۸۴۵ میلادی مسئلۀ پیدا کردن موقعیت سیارۀ ناشناخته به لو وریه، ریاضیدان فرانسوی، سپرده شد. او اولاً تمام رصدها تا آن سال، بهخصوص نتایج رصدخانۀ پاریس و همچنین نتایج رصدخانۀ گرینویچ که بهتازگی برایش ارسال کرده بودند را بررسی کرد. ثانیاً محاسباتی که بوار برای جداول اورانوس انجام داده بود را دوباره انجام داد و اشکالات کارش را تصحیح کرد. سپس سعی کرد با استفاده از معادلات لاپلاس مسئلۀ محاسبۀ پارامترهای مداری سیارۀ ناشناخته را کشف کند. این مسئلهای کاملاً جدید بود؛ چون تا پیش از آن، موقعیت سیارات با در نظر گرفتن اختلالات گرانشی از سوی سیارات دیگری که مکانشان از قبل مشخص بود تعیین میشد، اما در اینجا مسئله معکوس است؛ یعنی باید موقعیت یک سیارهای را پیدا کنیم که در واقع هیچ چیزی جز اثر اختلالات گرانشی آن بر روی سیارۀ دیگر نمیدانیم. این مسئلۀ بسیار سختی است؛ چون پارامترهای مجهول زیادی وجود دارد. ضمناً در آن زمان، حتی درمورد سیارۀ اورانوس هم، بهدلیل ناهمخوانی رصدها با محاسبات، پارامترهای مداری آن کاملاً مشخص نبود. بنابراین لو وریه باید درواقع این پارامترها را همزمان برای اورانوس و سیارۀ جدید به دست میآورد؛ مسئلهای با ۱۲ مجهول!
معمولاً در فیزیک در هنگام مواجهۀ با چنین مسائلی سعی میکنیم با در نظر گرفتن فرضهایی معقول، مسئله را سادهتر کنیم. لو وریه با کمک رابطۀ تیتیوس-بوده فرض کرد که فاصلۀ سیارۀ جدید از خورشید حدود دو برابر فاصلۀ سیارۀ قبلی، یعنی اورانوس تا خورشید است. همچنین از آنجایی که مدار سه سیارۀ قبلی انحراف بسیار کمی نسبت به صفحۀ دایرةالبروج دارند، فرض کرد که مدار سیارۀ جدید کاملاً منطبق بر صفحۀ دایرةالبروج است (اصطلاحاً میل مداری آن صفر است). این دو فرض را برای سیارۀ اورانوس هم در نظر گرفت. بنابراین با در نظر گرفتن این ۴ فرض، تعداد مجهولات به ۸ عدد رسید که با احتساب جرم سیاره، تعداد کل مجهولات ۹ عدد شد.
جزئیات محاسبات لو وریه بسیار پیچیده و طولانی و از حوصلۀ بحث خارج است. یک فیزیکدان فرانسوی بهنام «ژان-بتیست بیو» تلاش کرد طی سالهای ۱۸۴۶ و ۱۸۴۷، روشهای لو وریه را برای حل این مسئله شرح دهد. نتیجۀ کار او شش مقاله شد! او وقتی به مقالۀ سوم رسیده بود نوشت: «هرچقدر در وظیفهای که متقبّل شدهام جلوتر میروم، ظاهراً سختی موضوع افزایش مییابد.»
لو وریه نتایج اولیۀ خود را در ۱ ژانویه ۱۸۴۶ به آکادمی علوم فرانسه ارائه کرد و ۹ ماه بعد، نتایج دقیقتر را طی مقالهای منتشر کرد. او در این مقاله مکان سیاره را در حدود ۵ درجهای سمت شرق ستارۀ دلتای صورت فلکی جَدی اعلام کرد و حتی تقریبی از اندازۀ ظاهری قرص آن و روشناییاش در آسمان — احتمالاً برای ترغیب بیشتر رصدگران — ارائه داد. متأسفانه در آن زمان تلسکوپ رصدخانۀ پاریس در وضعیت مطلوبی نبود و همچنین نقشۀ دقیقی هم از آن قسمت موردِنظر آسمان در رصدخانه وجود نداشت تا بتوانند ستارگان در آسمان را با مشاهدۀ خود مقایسه کنند. بنابراین لو وریه بلافاصله شروع به نامهنگاری با رصدخانههای مختلف در کشورهای دیگر کرد. او برخلاف آدامز که در انتشار نتایج محاسباتش دچار تردید بود، با قاطعیت فراوان به منجمان رصدگر اعلام کرد:
«به محلی که من تعیین کردهام نگاه کنید تا در آنجا سیاره را ببینید.»
اوربن لو وریه
در ۱۸سپتامبر۱۸۴۶ لو وریه نامهای به «یوهان گاله» در رصدخانۀ برلین فرستاد. این نامه پنج روز بعد، یعنی در ۲۳ سپتامبر به دست او رسید. گاله اجازههای لازم را از «یوهان اِنکه»، مدیر رصدخانه، دریافت و مقدمات لازم را با کمک یک دانشجوی ارشد از کوپنهاگ بهنام «هنریش لوئیس دارست» مهیا کرد. خوشبختانه یک نقشۀ آسمان از دانشگاه برلین نیز در رصدخانه موجود بود که همۀ ستارگان تا قدر ظاهری ۱۰ را در مجدودۀ موردنظر در برداشت. اینگونه بود که گاله دقیقاً در شب همان روزی که نامۀ لو وریه را دریافت کرد، توانست با تلسکوپ شکستیِ ۹/۵ اینچی رصدخانه، با اختلاف اندکی در حدود ۱ درجه از محل تعیینشده، سیارۀ نپتون را کشف کند! او این رصد را در شب بعد نیز تکرار کرد و از صحتوسقم آن مطمئن شد. روز بعد گاله و اِنکه نامهای برای لو وریه نوشتند و ضمن شرح رصد سیارۀ مذکور، این کشف بزرگ را به او تبریک گفتند.
بلافاصله بعد از اعلام کشف سیارۀ جدید، بسیاری از منجمان و دانشمندان دیگر ازجمله خودِ لو وریه آن را رصد کردند. لووریه که بسیار خوشحال از کشف انجامگرفته بود، در ۵ اکتبر نوشت: «این موفقیت این آرزو را در پی دارد که بعد از رصدهای سیارۀ جدید طی ۳۰-۴۰ سال آینده، امکانی فراهم شود تا با استفادۀ از آن، مدار سیارۀ بعدی — به ترتیبِ فاصلۀ از خورشید — کشف شود و همینطور این ماجرا ادامه پیدا کند.» البته بعدها اجرام دیگرِ دورتری مانند سیارۀ کوتولۀ پلوتو و اِریس کشف شدند، اما نه از طریق تأثیرات گرانشیشان بر روی مدار نپتون — این دو آنچنان کمجرم و دور هستند که عملاً هیچ اثر محسوسی بر روی مدار نپتون ندارند — بلکه از طریق پیمایشهایی که توسط حسگرهای تصویربرداری CCD انجام شد.
نحوۀ کشف دو سیارۀ اورانوس و نپتون، مانند هر ماجرای بزرگ دیگری در تاریخ علم، بسیار درسآموز است؛ گاهی پیشرفت در ساخت یک ابزار، کشف اتفاقیِ سیارهای را رقم میزند و گاهی قدرت پیشگویی مدل ریاضیاتی از وجود یک سیاره پردهبرداری میکند؛ اما در همۀ این دستاوردهای علمی میتوان ردّپای وجوه انسانی را مشاهده کرد؛ ما انسانها تلاش میکنیم تا با وجود همۀ ضعفها و ناتوانیها، از همۀ ظرفیتها و توانمندیهایمان استفاده کنیم تا بیشتر یاد بگیریم و بیشتر عالم پیرامونمان را درک کنیم.
چرا ستارهها و سیارات کروی هستند و کهکشانها معمولاً شکل دیسکی دارند؟
میخواهیم بدانیم شکل اجرام نجومی که در آسمان میبینیم به چه صورتی هستند؟ بگذارید ببینیم در آسمان بالای سرمان چه چیزهایی میبینیم؟ در طول روز عمدتاً خورشید را میبینیم! ولی در شب می توانیم ستارهها را هم مشاهده کنیم. در مناطق شهری تعداد خیلی کمی از آنها و در مناطق خیلی تاریک و بهدور از آلودگی نوری شهرها تا حدود پنج الی شش هزار ستاره! امروزه میدانیم که خورشید یک کره بزرگ گازی است که بهدلیل همجوشی هستهای در مرکز آن شعلهور و درخشان است. ستارههای آسمان شب هم همگی خورشیدهایی هستند کرویشکل؛ در اندازهها و دماهای مختلف. دیگر چهچیزهایی میتوانیم در آسمان شب ببینیم؟ ماه و گاهی، بعضی از سیارات منظومهشمسی. ماه و سیارات منظومهشمسی هم همگی بهشکل کروی هستند؛ سنگی، گازی یا یخی. همچنین میبینیم که خورشید، ماه و سیارات در محدودهای در آسمان که به آن منطقهالبروج گفته میشود، حرکت میکنند و این موضوع یعنی تقریباً همگی در یک صفحه حول خورشید میگردند. بنابراین اگر میتوانستیم از بالا به منظومهشمسی نگاه کنیم میدیدیم که ساختاری شبیه به یک دیسک دارد. دیگر چه؟ اگر در مناطق تاریک و بهدور از شهرها باشیم این شانس را خواهیم داشت که نوار مهآلود کهکشان راهشیری را هم ببینیم. چرا نوار مهآلود؟ چون ما در واقع از داخل دیسک کهکشان به مناطق مرکزی آن نگاه میکنیم؛ بنابراین آن را بهصورت یک نوار میبینیم و گرد و غباری که در راستای دید ما قرار گرفته باعث میشود این نوار بهشکل مهآلود باشد. با کمک تلسکوپ میتوانیم کهکشانهای دیگر را هم ببینیم که عمدتاً ساختاری دیسکیشکل دارند. گهگاه در آسمان شب میتوانیم دنبالهدارها و شهابها را هم ببینیم. دنبالهدارها را میتوان از جمله اجرام سرگردان منظومهشمسی دانست که معمولاً شکلهای نامنظم دارند. دنبالهدارها حاوی مقادیر زیادی یخ (مواد فرار مثل آب، متان، آمونیاک و غیره) هستند و معمولاً در مدارهای کشیدهی باز یا بسته بهدور خورشید میگردند. با نزدیک شدن به خورشید یخ آنها آب شده و فوران میکند و بههمراه خود بخشهایی از این گلولههای برفی کثیف را در فضا بر جای باقی میگذارند که تشکیل دنباله را میدهند. این مواد برجایمانده که بهشکل گرد و غبار و تکهسنگهای بزرگ و کوچک هستند میتوانند با عنوان شهوابوارها گاهی در مسیر حرکت زمین قرار گرفته، وارد جو شوند و بهدلیل اصطکاک بالا با مولکولهای داخل جو بسوزند و ردّی درخشان از خود بهنمایش بگذارند. همان شهابهای جذاب آسمان!
با این توضیحات، اجرام و ساختارهای نجومی میتوانند اشکال مختلفی داشته باشند، اما چرا این اشکال را دارند؟ چرا تمام ستارهها و سیارات بهشکل کروی هستند؟ چرا منظومهشمسی و همچنین بیشتر کهکشانها ساختاری دیسکی دارند؟ و چرا دنبالهدارها و اجرام سرگردان در منظومهشمسی شکلهای نامنظم دارند؟
در ویدیوی زیر که قسمت اول از سری لایوهای اینستاگرامی «علامت سؤال» بوده درمورد پاسخ این سؤالات توضیح دادهام.
«علامت سؤال» عنوان سری لایوهای اینستاگرامیای است که در هر قسمت از آن به یک سؤال نجومی پاسخ داده میشود. این سؤال میتواند ساده اما حاوی نکتهای مهم باشد! در علامت سؤال اول درمورد شکل اجرام سماوی و دلیل آن توضیح داده شده است.
حتما شما هم این تجربه رو داشتید که وقتی بیرون شهر و به دور از آلودگی نوری بودید بصورت کاملا اتفاقی یک شهابسنگ (آذرگوی) از جلوی چشماتون رد شده و هیجان زده تون کرده باشه. شاید هم سعی کرده باشید که اونو به بقیه هم نشون بدید؛ ولی احتمالا تا اون موقع دیگه نه شهابسنگی در کار بوده و نه ردی از اون! 🙁 در واقع علت بوجود اومدن شهابسنگها اینه که ذرات کوچیک گرد و غبار که اندازشون معمولا در حد ذرات شن و یا سنگریزه هست با سرعت خیییلی زیاد وارد جو زمین میشن و با فشرده کردن گازی که جلوشون هست باعث گرم شدن اون گاز شده و میسوزن و رد معروف خودشون رو بجای میگذارن *(۱). منظورم از سرعت خیییلی زیاد چیزی در حدود دویست هزار کیلومتر در ساعت بطور متوسط هست! (با این سرعت فاصله بین زمین تا ماه رو میشه دو ساعته طی کرد!) گاهی اوقات گرم شدن ذرات جو توسط شهابسنگها باعث یونیزه شدن اونها میشه و حتی ممکنه تا چند دقیقه هم ردش توی آسمون باقی بمونه! ماحصل سوختن شهابسنگها داخل جو، ورود سالانه حدود چهل هزار تن خاک، بهطور متوسط، به زمین هست! البته طبیعت کار خودش رو بلده و این حجم از خاک و گرد و غبار برای طبیعت نه تنها مضر نیست بلکه مفید هم هست؛ مثلا باعث تشکیل هستههای میعان برای تشکیل ابرها و یا بارور کردن پلانکتون ها در قطب جنوب میشن!
شاید بپرسید این همه غبار و سنگریزه از کجا میاد؟! خب در پاسخ باید گفت که اینجور چیزها توی منظومه شمسی عادیه! توی منظومه شمسی مقدار زیادی «غبار کیهانی» وجود داره که البته معمولاً در ابعاد چند مولکول تا چند میکرون هستند و بسته به اینکه منشأشون چی هست، ممکنه ابعادشون بزرگتر هم باشه. منبع این غبار در منظومه شمسی ممکن هست ناشی از گرد و غبار بجا مونده از دنبالهدارها یا سیارکهاو یا غبارهای جدا شده از کمربند کوییپردر مرزهای بیرونی منظومه شمسی باشه و یا حتی ریشه در غبار میانستارهایداشته باشن که بخاطر حرکت منظومه شمسی به داخل اونها، به منظومه ی ما وارد شدن.
کمربند کوییپر و بعد از اون ابر اورتکه تقریبا تا میانه راه تا نزدیک ترین ستاره از خورشید کشیده شده، سکونتگاهی برای حدود چند هزار میلیارد جسم کوچیکیه که همه در مدارهایی به دور خورشید میگردن. هر از چند گاهی اختلالات گرانشی که از بیرون از منظومه شمسی (مثل رد شدن یک ستاره) و یا از داخل (توسط سیارات بزرگ مثل مشتری) به این اجسام وارد میشه، باعث حرکت اونها به سمت خورشید میشه و داخل یک مدار باز یا بسته قرار میگیرن و «دنباله دارها» رو بوجود میارن. معمولاً از این اجرام به عنوان «گلولههای برفی کثیف» تعبیر میشه؛ چون ترکیبی از یخ و خاک هستن (منظور از یخ، مواد فرار مثل آب، متان، آمونیاک و یا ترکیبی از اونهاست). وقتی دنبالهدارها به سمت خورشید حرکت میکنن گرمای خورشید باعث بخار شدن یخ و جدا شدن گرد و خاک های همراهش میشه؛ بنابراین دنبالهای ازشون بهجا میمونه که با سرعت کمتری داخل مدار در حرکت هستن. هر بار که دنبالهدار به دور خورشید میگرده، یک مقدار مشخصی از اون جدا شده و در مدار باقی میمونه و در نتیجه یک نهری از شهابوارها (meteoroid stream)بوجود میاد. حالا اینکه این شهابوارها کجا با زمین برخورد پیدا کنن، بستگی به کشش گرانشی سیارات داره که این نهر رو به کدوم سمت هدایت کنن. در بیشتر مواقع، تقاطعی بین زمین و شهابوارها اتفاق نمیافته، ولی اگر این اتفاق بیفته باعث بوجود اومدن اصطلاحاً «بارشهای شهابی (meteor shower) » میشه.
در طول زمان طولانی ممکنه اتفاقات بغرنجی برای این نهر و یا «دنباله غبار (dust trail)» بیفته و اثراتی رو ایجاد کنه: مثلاً ممکنه که مدار دنبالهدارها و شهابوارهای باقیمونده از اون، توی مدارهای رزونانسیبا مشتری و یا یک سیاره بزرگ قرار بگیرن. (یعنی تعداد صحیحی از گردشهای دنباله دار به دور خورشید با دقیقاً تعداد صحیح دیگری از تعداد گردش های سیاره برابر باشه). این پدیده باعث بوجود اومدن یک مؤلفه بارش به نام فیلامان(filament) میشه (که در واقع باعث شدت گرفتن بارش میشه). دومین اثر ممکنه به علت نزدیک شدن به یک سیاره بوجود بیاد؛ مثلاً وقتی این توده از نزدیکی زمین عبور کنه، ممکنه باعث شتاب گرفتن و یا کند شدن حرکت شهابوارها بشه و شکاف هایی رو برای عبور دفعهی بعد بوجود بیاره. همچنین، مثلاً اختلالات ناشی از گرانش مشتری در مواقعی که در بیشترین فاصله خود در مدارشون از خورشید هستن و حداقل سرعت رو دارن، موجب تغییر در توزیع اونا داخل نهر بشه. سومین اثر به علت فشار تابشی بوجود میاد (در واقع تابش فوتونها باعث وارد کردن نیرو و تولید فشار میشه). این فشار تابشی ذرات کوچکتر رو به مدارهای دورتر میفرسته؛ بنابراین بعضی دنباله های غبار، بیشتر شامل شهابوارهای بزرگتر و شهابهای درخشانتر هستن و بعضی دیگه شامل شهابوارهای کوچکتر و در نتیجه شهابهای کمنورتر. این اثر موجب پراکنده کردن شهابوارها و پهن شدن نهرها در طول زمان هم میشه. شهابسنگهایی که ما از این نهرها میبینیم، قسمتی از بارش های شهابی سالانه هستند؛ چون زمین با نرخ تقریباً ثابتی هرسال با این نهرها روبرو میشه.
در زمان اوج بارش شهابی در آسمانی تاریک، میشه بهطور متوسط چیزی در حدود چند ده شهابسنگ در ساعت دید. البته گاهی اوقات که تعداد شهابوارها خیلی زیاد هست، باعث بهوجود اومدن اصطلاحاً «طوفان های شهابی (meteor storms)»یا «فوران شهابی (meteor outburst)» میشن، که در اون نرخ بارش به حدود ۱۰۰۰ شهاب در ساعت هم میرسه! (در سال ۲۰۰۲ این اتفاق دو بار در بارش شهابی اسدی افتاد).
اگر در بارش های شهابی رد شهابسنگها رو دنبال کنید، به نظر میرسه که انگار شهابسنگها همگی از نقطه خاصی از آسمون میان. (البته شهاب ها تقریباً بصورت موازی با همدیگه وارد جو میشن ولی بهدلیل خطای چشمی پرسپکتیواینطور به نظر میرسه که همه از یک نقطه کانونی میان.) این نقطه خاص توی آسمون بسته به اینکه توی کدوم صورت فلکی باشه، باعث نامگذاری بارش شهابی میشه. مثلا در بارش شهابی برساوشیبه دلیل اینکه کانون بارش در صورت فلکی برساوشقرار داره، به این اسم نامگذاری شده. سالیانه بارشهای شهابی مختلفی اتفاق میفته که هرکدوم زمان مشخصی دارند: از جمله مهمترین بارش های شهابی، بارشهای شهابی برساوشی در مرداد، بارش شهابی اسدیدر آبان، بارش شهابی جوزاییدر آذر و بارش شهابی ربعیدر دیماه هستن.
بارش شهابی برساووشی از ۲۷ام تیرماه شروع و تا سوم شهریور ادامه داره. اوج این بارش هرساله در حدود ۲۲ام مرداد اتفاق میفته. منشأ این بارش، دنباله دار «سوئیف تاتل» هست که هر ۱۳۳ سال یکبار به دور خورشید میگرده.
چیزی که بارش شهابی برساوشی امسال(۱۳۹۵) رو متمایز کرده، احتمال دو برابر شدن تعداد شهابهاست. طبق گفته ی ناسا، چون توده شهابوارهای بهجامونده، بهدلیل گرانش سیاره مشتری کمی جابجا شده، امسال زمین از داخل قسمت متراکمتری عبور میکنه و احتمالا به نرخ ۲۰۰ شهاب در ساعت در اوج بارش برسیم. البته نباید توقع داشته باشید که این تعداد بهصورت کاملا یکنواخت اتفاق بیفته. بلکه ممکنه دو یا سه شهابسنگ رو ظرف چند ثانیه ببینید و توی چند دقیقه بعدی خبری از شهابسنگ نباشه! برای بارش شهابی برساوشی امسال، تنها کافیه به منطقه ای برید که آسمون تاریکی داشته باشه. بهترین شب برای رصد این بارش شهابی زیبا، شب های ۲۱ام و ۲۲ام مرداد و بهترین زمان بعد از نیمه شب تا قبل از سحر هست.
برای پیدا کردن کانون بارش باید به سمت شمال شرق آسمون به دنبال صورت فلکی ذات الکرسی یا دبلیوبگردید (شکل پایین). درست در پایین این صورتفلکی و نزدیک به صورت فلکی برساوش، مرکز بارش قرار داره.
امیدوارم از این بارش شهابی بیشترین لذت رو ببرید و بقیه رو هم توی این لذت سهیم کنید 🙂
(۱): به اجرامی که ممکنه یک روزی داخل جو زمین بشن شهابوار (meteoroids) گفته میشه. وقتی شهابوارها وارد جو میشن و میسوزن بهشون شخانه(meteor) میگن و اگر قبل از سوختن کامل از جو عبور کرده و با زمین برخورد کنن، شهابسنگ(meteoride) نامیده میشن. توی این مقاله برای راحتی بهجای کلمه ی عجیب و غریب شخانه (معادل فارسی شهاب)، از شهابسنگ یا به اختصار شهاب استفاده شده!