رفتن به نوشته‌ها

برچسب: نظریه توازن

سرطان از نگاه پیچیدگی

سرطان به عنوان یکی از بیماری‌های که این روزها نامش بر سرزبان‌ها افتاده است، نامی است که به مجموعه‌ای از بیماری‌هایی اطلاق می‌شود که از تکثیر مهارنشده سلول‌ها پدید می‌آیند. سرطان عموما به عنوان بیماری ژن‌ها شناخته می‌شود؛ به این معنا که تغییرات ژنتیکی می‌توانند منجر به بروز این عارضه شود. از سوی دیگر، تلاش‌های صورت گرفته پیرامون کنترل و درمان سرطان عمدتا بر اساس شناخت ژن‌های موثر در سرطان‌های مختلف، تاکنون با چالش‌های زیادی همراه بوده است. در نگاه پیچیدگی، حرکت‌های جمعی برآمده از برهمکنش‌های یک سیستم‌ بس‌ذره‌ای (سلول) تنها با مطالعه اجزای آن سیستم (ژن‌ها) قابل توصیف نیست و با دانستن این‌که هر جز (ژن) چگونه کار می‌کند، نمی‌توان درک کاملی از مقیاسی بزرگ‌تر (سلول) با سازمان‌دهی مرتبه‌-بالاتری پیدا کرد. در مورد ژن‌ها می‌دانیم که بیان هر ژن بر بیان سایر ژن‌ها اثر می‌گذارد و وجود این همبستگی‌ها سبب تشکیل یک حرکت جمعی می‌شود که خود باعث اثر گذاشتن روی بیان سایر ژن‌ها می‌‌شود. هدف این مطالعه، نگاهی پدیدارشناسانه به سرطان سینه و مقایسه رفتار جمعی ژن‌ها در نمونه سالم و سرطانی است. با در نظر گرفتن سلول به عنوان یک سیستم پیچیده، می‌خواهیم شبکه پیچیده‌ای که در پس این سیستم نشسته است را مورد مطالعه قرار دهیم به امید این‌ که درک بهتری از سرطان از نگاه پیچیدگی پیدا کنیم.

بدین منظور، با در نظر گرفتن هر ژن به عنوان یک اسپین و برهمکنش ژن با ژن به عنوان ضریب جفت‌شدگی بین دو اسپین متناظر با آن‌ها در یک مدل شیشه-اسپینی (مدل گاوسی چند متغیره)، به دنبال استنباط این ضرایب هستیم. برای این‌ کار با استفاده از اصل بیشینه آنتروپی، ماتریس برهمکنش را برای نمونه سالم و سرطانی یافته و از روی آن شبکه تنظیم ژن را برای دو نمونه بازسازی می‌کنیم. این شبکه‌ها، دارای یال‌هایی با وزن‌های مثبت و منفی هستند، بنابراین می‌توانیم در چارچوب نظریه توازن به این شبکه‌ها انرژی نسبت دهیم و تمایل شبکه‌ها نسبت به تغییر وضعیتشان را مورد بررسی قرار دهیم. نتایج ما نشان می‌دهد که توزیع مثلث‌های ایجاد شده در شبکه از یک الگوی توانی پیروی می‌کند. از نقطه نظر چشم‌انداز انرژی، انرژی شبکه سالم از شبکه سرطانی بیشتر است و این به معنای پویایی بیشتر سلول سالم نسبت به سرطانی است. شبکه سرطانی تمایل کم‌تری نسبت به تغییر وضعیت خود دارد و به همین خاطر دسترسی کم‌تری به وضعیت‌های قابل دسترس خود پیدا می‌کند. از سوی دیگر، در شبکه‌ سرطانی، تعداد یال بیشتری دیده می‌شود. وجود یال بیشتر، به معنای ارتباط بیشتر بین اجزا و تاثیر بر دینامیک سلول است. رهیافت دنبال‌شده در این مطالعه به ما در یافتن درک بهتری از سلول به عنوان یک سیستم پیچیده کمک می‌کند.

ارجاع به اثر: arXiv:2010.05897 [q-bio.MN]

 

 

2010.05897

برای اطلاعات فنی بیشتر به این صفحه رجوع کنید.

مدل باراباشی-آلبرت و تولید شبکه‌های بی‌مقیاس

در پست قبل در مورد بالانس تئوری یا نظریه توازن صحبت کردیم و نشون دادیم که به کمک یک مدل ساده و ابتدایی می‌تونیم به جوامع، متناسب با نوع رابطه‌ی اعضا با همدیگه، انرژی نسبت بدیم و مقدار این انرژی به ما میگه که جامعه مد نظر در چه وضعیتی از توازن قرار داره.

بنابر بهنجارش، اگر انرژی جامعه‌ ۱- به‌دست بیاد، جامعه کاملا متوازن یا بالانس هست که این در صورتی رخ میده که همه اعضای جامعه دوست همدیگه باشند و یا اینکه جامعه دو قطبی بشه، یعنی جامعه به دو زیر مجموعه تقسیم بشه به نحوی که درون زیرمجوعه‌ها اعضا دوست باشند اما هر عضوی از این زیرمجوعه با اعضای زیرمجوعه‌ی مقابل دشمن باشه. همین‌طور اگر انرژی جامعه بیشتر از ۱- به‌دست بیاد یعنی جامعه نامتوازن‌ هست و هر چقدر که انرژی به ۱+ (کران بالای انرژی بنابر بهنجارش) نزدیک‌تر باشه جامعه نامتوازن‌تر هست که به معنی وجود امکان نزاع و درگیری در بین اعضاست.

طی این پست‌ می‌خوایم ببینیم اگر به یک جامعه با شرایط اولیه مشخص (جمعیت و انرژی اولیه)، عضو جدیدی وارد بشه چه اتفاقی می‌افته. اما قبل از اون اجازه بدید که مدل باراباشی-آلبرت رو معرفی کنیم.

همه‌ی ما گزاره‌های این شکلی رو زیاد شنیدم: «پول، پول میاره» یا «ثروتنمندان، ثروتمندتر میشند و فقرا فقیرتر».  بد نیست بدونید که جامعه‌شناسان به این پدیده می‌گند اثر متیو (Matthew Effect). ماجرا از اینجا شروع میشه که درون شبکه‌هایی مثل وب(www)، اینترنت، شبکه استناد (citation networks) و شبکه‌های اجتماعی  اعضایی وجود دارند که علی‌رغم تعداد کمشون، توجه زیادی از شبکه رو به خودشون معطوف می‌کنند.

توزیع قاون‌توانی، قسمت سبز رنگ ۸۰٪ از شبکه را شامل می‌شود و دم‌دراز زرد رنگ ۲۰٪ باقی‌مونده را.
توزیع قانون‌توانی، قسمت سبز رنگ ۸۰٪ از شبکه را شامل می‌شود و دم‌دراز زرد رنگ ۲۰٪ باقی‌مانده را.

به عنوان مثال در بین تمام سایت‌ها گوگل، ویکی‌پدیا و فیس‌بوک بیشترین بازدیدکننده‌ها و پیوندها رو دارند یا مثلا در جامعه‌ی ما، محمدرضا شجریان، حسین علیزاده و کیهان کلهر  جزو برجسته‌ترین هنرمندان موسیقی سنتی هستند، در مقایسه با جمعیت هنرمندان موسیقی، این افراد تعدادشون کمه. با این‌وجود شهرت و محبوبیشون از همه هنرمندان بیشتره. این شبکه‌ها، شبکه‌های بی‌مقیاس (scale-free) هستند به این معنی که توزیع درجه در این شبکه‌ها با تقریب خوبی از یک الگوی قانون‌توانی(power law) پیروی می‌کنه. این چندتا جمله‌ی سخت که گفتم یعنی اینکه وقتی ما این شبکه‌ها رو با یک گراف نمایش می‌دیم، درجه ‌رئوس متناسب با وارون فراوانی(تعداد) اون رئوس هست . یعنی هرچی راسی درجه‌ش بیشتر باشه (تعداد یال‌های بیشتری بهش متصل بشند) فراوانیش کمتره و هر چقدر درجه راسی کم‌تر باشه فراوانیش بیشتره! همون‌جوری که تعداد سایت‌هایی مثل گوگل تعدادشون خیلی کمه، چون درجه‌شون زیاده.

رشد یک شبکه مطابق با مدل باراباشی-آلبرت که در هر مرحله راس جدید به ۲ راس قبلی وصل می‌شود.

کار آلبرت باراباشی و رکا آلبرت معرفی الگوریتمی بود که قادره چنین شبکه‌هایی رو مدل‌سازی کنه. این الگوریتم صرف‌نظر از تصادفی بودن باید گرافی رو تولید کنه که توزیع درجه‌ رئوسش قانون‌توانی باشه. برای همین اساس این مدل دو چیزه:

۱) رشد: در طی زمان رئوس جدیدی به شبکه اضافه می‌شند.

 ۲) اتصال ترجیحی: رئوس جدید ترجیح می‌دند به رئوسی وصل بشند که درجه‌ی بالاتری دارند.

برای همین این الگوریتم ابتدا یک شبکه متصل (همبند) با m_0 راس ایجاد می‌کنه. بعد از اون، در هر مرحله، راسی اضافه می‌شه و به m \le m_0 راس قبلی وصل میشه. این راس بر اساس درجه‌شون انتخاب می‌شند: یعنی احتمال اینکه راس جدید به iامین راس موجود درگراف وصل بشه برابره با نسبت درجه راس iام به مجموع درجات کل رئوس. این سبب میشه که «هاب» در شبکه به‌وجود بیاد. هاب‌ها رئوسی هستند که درجه‌ شون از بقیه رئوس شبکه بیشتره. (صفحه شجریان در اینستاگرام یک هاب به حساب میاد در بین خواننده‌ها همون‌جوری که گوگل یک هابه در بین سایت‌ها!). يادتون باشه که در مدل باراباشی-آلبرت وزن هر یال ۱ است!