رفتن به نوشته‌ها

برچسب: انرژی تاریک

در رویارویی با علم و مسئله ترویج آن

در مورد علم، شبه‌علم، روش و تحول ساختارش، ارتباط‌‌گری و روایتگری در علم زیاد حرف زده شده. با این وجود، خوبه که هر از گاهی با مرور بعضی مثال‌ها، به این موضوعات دوباره فکر کنیم. توی این مسیر همیشه باید توجه کنیم که علم، نه تقدس به همراه میاره و نه قاطعیت! به قول فاینمن، گزاره‌های علمی از جنس این نیستند که چه چیزی درست یا غلطه، بلکه اونا گزاره‌هایی هستند با درجه‌های مختلفی از عدم قطعیت در مورد چیزهایی که می‌دونیم. از طرف دیگه، باید به عنصر آزمایش یا تجربه در «علوم تجربی» هم توجه کنیم. در علم، هر اندازه‌گیری همراه با مقداری خطا گزارش میشه که به ما میگه عدم قطعیت (دقت) موجود در این اندازه‌گیری چقدره و ما تا کجا می‌تونیم مطمئن باشیم از مقدار مشاهده شده. میزان موفقیت یک نظریه علمی هم در دقت پیش‌بینی‌هایی هست که در مورد کمیت‌های مورد نظر ارائه می‌کنه. نظریه‌ای دقیق‌تره که نتایجش نزدیکتر به واقعیت (اندازه‌گیری‌ها) باشه. نظریه الکترودینامیک کوانتومی دقیق‌ترین نظریه فیزیکه چون مقداری که برای «ثابت ساختار ریز» معرفی می‌کنه تا ۸ رقم بعد از ممیز با مقدار اندازه‌گیری شده می‌خونه.

با این وجود، دقیق‌ترین نظریه لزوما بهترین نظریه نیست! مثلا در مسائل گرانشی، نسبیت توصیف دقیق‌تری ارائه می‌کنه، با این حال در زندگی روزمره معمولا ما به این میزان دقت نیاز نداریم؛ یک مهندس شهرسازی هیچ ملاحظه نسبیتی رو نیاز نیست که رعایت کنه! حتی اگه این کارو بکنه، فقط زمان و انرژی بیشتری برای محاسباتی صرف کرده که نتایج بهتری بهش تحویل نمیدن! اما مثلا در توصیف مدار عُطارِد دیگه این جوری نیست. نظریه نسبیت به طور چشم‌گیری دقیق‌تره و بر خلاف نظریه‌های غیرنسبیتی مقادیر معقول‌تری رو پیش‌بینی می‌کنه. خلاصه این‌که اگه همین‌طور رو هوا کسی بگه «آینشتین درست گفت و نیوتون غلط» نشون میده که یه آدم غیرحرفه‌ایه! همیشه توی علم مهمه که با چه مسئله‌ای روبه‌رو هستیم و انتظارات از مطالعه یا پژوهش ما چیه. گاهی مدل‌های خیلی ساده می‌تونن نتایج خیلی خوبی، بسته به مسئله مورد نظر، ارائه کنند. مثلا مدل آیزینگ با تمام سادگی‌هاش توصیف خیلی خوبی از گذارفاز خودبه‌خودی فرومغناطیسی و پدیده‌های بحرانی مرتبط با اون ارائه می‌کنه. انتخاب مدل در علم خودش بحث مفصلیه. بگذریم.

برای همین، اگه کمی دقت کنیم خیلی چیزها دیگه زیر پرچم علم قرار نمی‌گیرند. دونستن ارتفاع قله اورست یا ظرفیت گرمایی نقره علم حساب نمیشه. این‌ها اطلاعاتی هستند که پس از یک‌بار استخراج یا محاسبه میشه توی یه جدول نگهشون داشت و بارها ازشون استفاده کرد. همین‌طور خیلی از ادعاهایی که در رشته‌هایی مثل روان‌شناسی یا جامعه‌شناسی وجود داره علمی نیستند. چون یا درست آزمایش نشدند، یا قابل تکرار نیستند یا مشکلات دیگه‌ای دارن که روش تحقیقشون رو خارج از چارچوب روش علمی قرار می‌ده. حتی بخشی از ریاضیات هم علم نیست! در ریاضیات شما می‌تونید ساختارهای کاملا انتزاعی درست کنید بدون نیاز به وجود یا مثال خارجی. نکته مهم اینه که هر چیزی که علمی نباشه چیز بدی نیست. علمی بودن به ما یک سری ویژگی و ملاک‌ شناختی میده در برخورد با دنیای خارجمون. اصلا برای همینه که در علم، ندونستن عیب نیست و قرار نیست که علم به همه پرسش‌ها یا نیازهای بشر جواب بده. اعتبار بخشیدن به ادعایی به عنوان یک «گزاره علمی» فقط از این جهت قابل قبوله که میشه انتظارات مشخصی از اون حرف یا ادعا داشت.

یادگرفتن واژه‌ها خیلی لازم است، اما این کار علم نیست. البته منظور من این نیست که چون علم نیست نباید آن را یاد بدهیم. ما دربارهٔ این که چه چیزی را باید یاد بدهیم حرف نمی‌زنیم؛ دربارهٔ این بحث می‌کنیم که علم چیست. این که بلد باشیم چطور سانتی‌گراد را به فارنهایت تبدیل کنیم علم نیست. البته دانستنش خیلی لازم است، ولی دقیقاً علم نیست. برای صحبت کردن با همدیگر باید واژه داشته باشیم، کلمه بلد باشیم و درست هم همین است؛ ولی خوب است بدانیم که فرق «استفاده از واژه» و «علم» دقیقاً چیست. در این صورت، می‌فهمیم که چه وقت ابزار علم مثل واژه‌ها و کلمه‌ها را تدریس می‌کنیم و چه وقت خود علم را یاد می‌دهیم. … اگر به شما بگویند «علم این و آن را نشان داده‌است.» می‌توانید بپرسید که «علم چطور آن را نشان داده‌است؟ چطور دانشمندان فهمیده‌اند؟ چطور؟ چه؟ کجا؟» نباید بگوییم «علم نشان داده‌است.»، باید بگوییم «تجربه این را نشان داده‌است.» و شما به اندازهٔ هر کس دیگر حق دارید که وقتی چیزی دربارهٔ تجربه ای می‌شنوید، حوصله داشته باشید و به تمام دلایل گوش فرا دهید و قضاوت کنید که آیا نتیجه‌گیری درست انجام شده‌است یا نه.

– ریچارد فاینمن در علم چیست؟!

پس از علم پیروی کنیم؟!

علم در مورد یک سری واقعیته. علم به ما نمی‌گه که چیکار کنیم یا نکنیم. چیزی که میگه اینه که اگه توپی رو با فلان سرعت از فلان نقطه پرتاب کنید، فلان مسیرو طی می‌کنه و بعد از زمان فلان با سرعت بهمان به نقطه مشخصی می‌رسه. پرتاب کردن یا نکردن توپ اما دست ماست. علم در فاجعه هیروشیما و ناکازاکی بی‌تقصیره ولی انسان‌ها و مدیران مختلفی در این مسئله مقصر هستند. میزان گناه‌کار بودن افراد رو علم مشخص نمی‌کنه بلکه قراردادهای غیر علمی اما حقوقی یا اخلاقی مشخص می‌کنند. پس لزومی نداره علم همه امور ما رو رتق و فتق کنه! علم گاهی در مسائلی می‌تونه اصلا جوابی نداشته باشه یا ممکنه ما رو در یک حالت بلاتکلیف قرار بده. در کنترل همه‌‌گیری کرونا علم نمی‌گه که فلان شهرو قرنطینه کنید یا در بهمان شهر قوانین منع تردد از ۷ شب وضع کنید. در این شرایط، اهل علم در گروه‌های تحقیقاتی مختلف، شروع به مدل‌‌سازی‌ و آزمایش می‌کنند. اونا شرایط مختلفی رو تست می‌کنن تا ببینن چه روش‌هایی منجر به چه دستاوردهایی میشه. مثلا ممکنه گروهی سراغ مدل‌های بخش‌بندی یا سراغ تحلیل‌های داده‌محور و بیزی برن و عده‌ای هم از مدلسازی عامل بنیان استفاده کنند. در نهایت این وظیفه یک مدیره که با بررسی نتایج گروه‌های مختلف و با در نظر گرفتن نظرات و یافته‌های گروه‌های اقتصادی، فرهنگی، سیاسی و … تصمیم آخر رو بگیره. علم، شطرنج‌باز نیست، قوانین شطرنجه!

در این ویدیو، سابینه هاسنفلدر به خوبی در مورد این مسئله حرف می‌زنه:

مسئله ترویج علم

ترویج علم یعنی چی؟! چه کسی مروج علمه؟

توافق کردن بر سر مفهوم ترویج علم، قبل از هر چیزی به این بستگی داره که تعریف علم و گزاره علمی رو بپذیریم و بعد در مورد کم و کیف رواج بحث کنیم. در فارسی، ترویج علم به احتمال زیاد وام‌دار مفهوم ترویج دینه چون در انگلیسی (عرف جهانی) معادلی برای ترویج علم نداریم. چیزهایی مثل «ارتباط‌گری» یا «علم‌ به زبان ساده» داریم ولی «ترویج علم» نه! معقول هم هست؛ در گذشته تفاوتی بین علم دینی و غیر دینی نبوده. طبیعتا هر چقدر که ابعاد ترویج دین زیاده ابعاد ترویج علم هم زیاده. پس شما هر کاری که در جهت گسترش علم انجام بدین زیر پرچم ترویج علمه. از تدریس و تحقیق گرفته تا ساخت مدرسه و دانشگاه، دادن کمک هزینه تحصیلی به افراد، شرکت داوطلبانه در آزمایش واکسن کرونا تا مبارزه با خرافات یا اجرای نمایش‌های مختلف برای آشنا کردن مردم کوچه‌ و بازار با مفاهیم علمی. برای همین چه توی تاکسی چه توی دانشگاه یا روزنامه‌ یا توییتر اگه کسی بگه: «از روی زمین، انگار که ماه نمی‌چرخه به این دلیل که سرعت چرخش ماه به دور زمین تقریبا برابر با سرعت چرخشش به دور خودشه.» ترویج علم انجام داده.

اما باید مراقب جنبه‌های دیگه این فرایند هم باشیم؛ به داستان‌های مختلفی که در مورد پول‌شویی به واسطه تاسیس خیره‌ها شنیدین فکر کنید. اگه کارتل‌های مواد مخدر به کلیساها یا نهادهای خیریه کمک‌ کنند، آیا «ترویج انسانیت» کردند؟! اگه دولتی اجازه ورود آلاینده خاصی به آب یا هوای کشورش رو بده و از طرف دیگه به کمک یک شرکت داروسازی داروهای مربوط به بیماری‌های ناشی از اون آلاینده رو با یارانه دولتی به بازار عرضه کنه، آیا این دولت «ترویج سلامت» کرده؟! در مورد ترویج علم هم این سوال وارده؛ اگه فردی، نهادی یا رسانه‌ای خواسته یا ناخواسته یا با روش یکی به نعل یکی به میخ هم مطالب علمی منتشر کنه و هم مطالب غیرعلمی یا شبه علم آیا باز هم در حال ترویج علمه؟! اگه فردی یا حزبی در مورد یک واقعیت علمی که موافق اهدافشه تبلیغ کنه ولی در مورد واقعیت دیگه‌ای که براشون هزینه ایجاد می‌کنه جوسازی‌های نادرست ایجاد کنه، آیا باز مشغول ترویج علمه؟! فراموش نکنیم که اصلا مهم نیست که هم‌قطارهای ما بگن فلان چیز علمیه یا نیست، این روش علمیه که مشخص می‌کنه که کی راست میگه!

دیشب در یک آگهی شنیدم که روغن وسون به داخل غذا نفوذ نمی‌کند. خب این واقعیت دارد و تقلبی در کار نیست؛ ولی آنچه من دربارهٔ آن صحبت می‌کنم تقلب نیست بلکه صحبت از صحت و درستی علمی است که در مرتبه دیگری قرار دارد. حقیقتی که باید به آگهی اضافه می‌شد، این است که هر روغنی که در دمای مشخص استفاده شود به داخل غذا نفوذ نمی‌کند. اما اگر در دمای دیگری مصرف شود حتی اگر روغن وسون باشد، در غذا نفوذ می‌کند. در نتیجه می‌بینیم در این آگهی نه حقیقت مطلب بلکه بخشی از آن بیان شده‌است؛ و ما با همین اختلاف سر و کار داریم. … اگر تصمیم دارید یک نظریه را آزمایش کنید یا ایده‌ای را توضیح دهید، باید همواره آن را بدون در نظر گرفتن پیامدهایش منتشر کنید. اگر تنها مطالب خاصی را چاپ کنید بدین معناست که قصد داشته‌اید آن را درست جلوه دهید، ازین رو باید تمام جوانب کار را منتشر کنید. دربارهٔ مشاوره‌های دولتی نیز این اصل اهمیت دارد. تصور کنید سناتوری بررسی یک مسئله حفر چاه در ایالتش را به شما واگذار کند و شما پس از بررسی، ایالت دیگری را برای اینکار مناسب‌تر تشخیص دهید، اگر شما تحقیقتان را منتشر نکنید، توصیه شما عملی نخواهد شد و شما آلت دستی بیش نخواهید بود. اگر نظر شما موافق نظر دولت و سیاستمداران باشد، آنها می‌توانند از آن در جهت به‌کارگیری مقاصدشان استفاده کنند و اگر شما با خواست‌های آنها در تضاد باشید، هرگز آن را منتشر نخواهند کرد. در این صورت کار شما دیگر یک توصیه علمی قلمداد نمی‌شود.

– ریچارد فاینمن در علم بارپرست‌گونه

روایتگری در علم و تیراژ کار

«منظور ما از روایتگری در علم نوع بیان و ارائه یک مطلب علمی با هر میزان پیچیدگی به مخاطبی با سطح مشخصی از تخصص است، به طوری که فرایند یادگیری لذت بخش باشد و فرد ارتباط بین مفاهیم را به درستی متوجه شود.»

در مورد روایتگری در علم در این نوشته و این ویدیو مفصل صحبت کردیم. به نگاره زیر نگاه کنید. محور افقی نشون‌دهنده میزان تخصص افراد در یک حوزه تخصصی خاص مثل فیزیکه. طبیعتا هر چقدر که به سمت راست حرکت کنیم میزان تخصص بیشتر میشه. روایتگری در علم فرایند ارائه مطلب توسط فردی در نقطه $X$ از محور به فردی قبل‌تر از اون ($X – \Delta X$) هست. مثلا ممکنه یک استاد با تجربه بعد از سال‌ها تدریس، یک کتاب آموزشی خوب برای دوره لیسانس یا یک پژوهشگر برجسته یک مقاله مروری برای بقیه پژوهشگرا بنویسه. گاهی هم روایتگری در علم می‌تونه سر کلاس فیزیک دبیرستان رخ بده یا توی مهمونی وقتی داری به داییت توضیح میدی که فرکتال‌ها چی هستن! به عنوان یک نمونه عملیاتی کلاس‌های درس ساسکایند یا درس‌گفتارهای فاینمن رو ببینید. به تولید این جنس محتوا می‌گیم روایتگری در علم و اگه مخاطب ما عموم مردم باشن، اون موقع این کار به صورت عمده توسط روزنامه‌نگاران علمی و ارتباط‌گران علم انجام میشه.

نمودار روایتگری در علم – روایتگری در علم از راست به چپ رخ می‌دهد.

یکی از اهداف جدی روایتگری در علم تولید محتوای خوش‌هضم‌ برای مخاطبه. هرچقدر محتوا باکیفیت بهتری آماده بشه طبیعتا احتمال یادگیری بالا میره و این می‌تونه به پیکره علم و جریان‌های علمی کمک کنه. برای همین همیشه مهمه که محتوای تولید شده چه مقدار مخاطب داشته باشه. خصوصا برای روزنامه‌نگاران علمی یا ارتباط‌گران علم. مثلا با توجه به شرایط همه‌گیری بیماری کرونا خیلی مهمه که عمده مردم واکسینه بشن. برای همین از یک طرف وظیفه مروجان علمه که تا جایی که میشه دولت‌ها رو تشویق به سرمایه‌گذاری در خرید و توسعه واکسن کنند و از طرف دیگه با آگاهی دادن به مردم اونا رو متقاعد کنند که واکسن چیز خوبیه، اومد بزنید! این تلاش‌ها باید در مقیاس کشوری و جهانی انجام بشه. برای همین اگر کسی قصد تولید محتوایی رو داشته باشه خیلی مهمه که جامعه هدف بزرگی رو پوشش بده. اما در مورد بقیه موضوعات قاعدتا نیازی نیست که تیراژ کار اینقدر زیاد باشه. مثلا افراد علاقه‌مند به نجوم یا علم داده قابل مقایسه با افراد علاقه‌مند به شیمی یا زیست‌شناسی دریا نیستند. برای همین درسته که تیراژ کار مهمه، اما باید دید در چه حوزه‌ای مشغول به کار هستیم. گاهی روایتگری در علم برای کلاس دو سه نفره‌ای از دانشجویان دکتری یا جلسه‌های دو نفره استاد و شاگرده.

چگونه در ترویج علم «گاوِ نُه مَن شیر» نباشیم؟!

در دنیای امروز که به لطف شبکه‌‌های اجتماعی هر کسی تریبونی داره به نظر می‌رسه که مشکلات ترویج علم کمتر باید بشه. اما در مورد پخش اطلاعات، متاسفانه نتایج تحقیقات این شکلیه که اطلاعات نادرست بیشتر بهره بردن از این بستر! با این وجود نکته‌هایی وجود داره که اگه رعایت نکنیم همه تلاش‌هامون از بین میره و دیگه علمی رواج ندادیم.

  • قبل از هر چیز بدونیم اگه در زمینه‌ای تخصص نداریم یا اطلاع کافی نداریم لزومی نداره که در موردش با همه صحبت کنیم. بارها در بین افراد مختلفی که فیزیک نخوندن و حتی تجربه جدی نجوم آماتوری ندارن دیدم که در مورد مسائل مربوط به مه‌بانگ و انرژی تاریک با بی‌دقتی تمام حرف می‌زنن. یا دانشجو تازه وارد فیزیکی که سعی داره در مورد جهان‌های موازی به دوستش توضیح بده و به جای این‌که صادقانه بگه «هنوز نمی‌دونم» شروع میکنه به داستان‌های غلط غلوط تعریف کردن! اولین نکته در ترویج علم از طریق بیان یا نوشته اینه که در مورد چیزی که حرف می‌زنیم به مقدار کافی اطلاع داشته باشیم و اگه سوالی ازمون پرسیدن که جوابش رو بلد نبودم خیلی صریح بگیم که نمی‌دونیم!
  • فراموش نکنیم که اگه دکتری فیزیک داشته باشیم دلیلی نمیشه که زیست‌شناسی رو هم خوب بشناسیم. خارج از حیطه تخصصی خودمون همیشه باید دست به عصا حرکت کنیم. بخش زیادی از اطلاعات نادرستی که دست مردم رسیده به خاطر حرف‌های اشتباه افراد تحصیل‌کرده بوده. مثلا در برنامه‌های مختلف تلوزیون زیاد می‌بینیم که افراد خارج از تخصصشون حرف‌های کاملا غلطی می‌زنن که به خاطر شهرت یا محبوبیتشون متاسفانه بسیار هم در جامعه حرفشون نفوذ می‌کنه. مثلا همین اواخر در برنامه خوب کتاب‌باز، آقای مجتبی شکوری که ظاهرا دکتری علوم سیاسی دارد در مورد نسبیت و مکانیک کوانتومی حرف‌های اشتباهی زد چون که می‌خواست با مفهوم نسبی بودن و گذر زمان بازی کنه. ایشون جزو محبوب‌ترین کارشناس‌های این برنامه هستن و قطعا با توجه به تعداد بالای بازدید اون برنامه و بازپخشش در اینستاگرام این کج‌فهمی علمی سال‌ها در جامعه باقی می‌مونه. کافی بود ایشون دو سه جمله‌ای که خارج از تخصصشون بود رو نمی‌گفت و نُه مَن شیر رو روی زمین نمی‌ریخت! چند سال پیش هم بهروز افخمی در بیست و دومین قسمت از برنامه تلویزیونی «چهل چراغ» چون می‌خواست برای حرفی که میزنه پشتوانه علمی بیاره، چرند و پرندهایی در‌ مورد نسبیت آینشتین و نظریه تکاملی داروین سر هم کرد و با قباحت تمام بیانشون کرد!
  • نکته دیگه پرهیز از ساده‌سازی‌های بی‌مورده. خیلی مهمه که ساده کردن یک مفهوم علمی سوءبرداشتی ایجاد نکنه. «شیر بی‌دم و سر و اشکم کی دید؟!» تلاش برای زیاد ساده کردن مفاهیم علمی و به درک توده مردم رسوندن کار هر کسی نیست. راستش ما باید مراقب شهوت بیان علم به زبان ساده باشیم! استفاده از بعضی مثال‌ها و استعاره‌ها برای توصیف یک مفهوم علمی گاهی منجر به ایجاد شبهه و عدم درک درست اون مفهوم یا پدیده میشه. از طرف دیگه بعضی از مفاهیم علمی درسته که اسامی آشنایی دارن ولی معنای فنی خاصی ممکنه داشته باشن. نباید موقع صحبت کردن یا نوشتن معنی فنی موضوع تغییر یا تقلیل پیدا کنه. مثلا واژه «کار»، «فشار» و «درهم‌تنیدگی» معنی کاملا دقیقی در فیزیک داره. در علم عناصر خیال و رمز و راز آلود بودنی وجود نداره و سعی شده هر کلمه تعریف کامل مشخصی داشته باشه. پس خوبه که یادآور بشیم که منظور ما دقیقا چیه از واژه‌های خاص. مثلا در مورد پیکان زمان و قانون دوم ترمودینامیک به راحتی نمیشه گفت که انتروپی یعنی بی‌نظمی و جهان به سمت بی‌نظمی می‌ره! لزومی نداره انتروپی معنی بی‌نظمی بده. در ضمن، نظم خودش تعریف مشخصی باید داشته باشه قبل از هر چیز. یا مثلا دورنوردی کوانتومی درسته که اتفاق افتاده ولی باید توجه کنیم که در چه شرایطی و با چه اندازه‌هایی این آزمایش انجام شده.
  • نکته مهم دیگه‌ای که به نظر من به شدت ازش چشم‌پوشی میشه استفاده از لحن و ادبیات مناسبه. اگر شما تجربه حضور در برنامه‌هایی مثل کنفرانس‌های علمی رو داشته باشین همیشه افراد بسیار با احتیاط و لحن خالی از عدم قطعیت کامل در مورد پدیده‌ها و یافته‌هاشون صحبت می‌کنند. این خیلی خیلی مهمه که موقعی که در مورد گزاره‌های علمی صحبت می‌کنیم جنس حرف زدن ما یا لحن نوشته ما جوری نباشه که در ناخودآگاه مخاطب احساس اطمینان و قطعیت ایجاد کنه. به نظرم افراد مدعی ترویج علم عمدتا این مشکل رو دارن. برای همین امروز در دنیا افرادی رو داریم که کیششون علم شده و گزاره‌‌های علمی رو مثل آیات کتب مقدس می‌دونن. از طرف دیگه وقتی فقط در مورد نتایج علمی صحبت میشه و از فرایندهای نفس‌گیر و پر از تنش در رسیدن به اون یافته‌ها صحبت نمی‌شه افراد درک درستی از شیوه عملیاتی روش علمی نمی‌بینن. بخشی از بی‌اعتمادی مردم به علم حاصل ندونستن مسیر پرزحمت و پر از سوال و جواب برای رسیدن به یافته‌های علمیه. مروج علم باید شیوه کار کردن علم در دنیای واقعی رو هم ترویج بده و گرنه افراد با تخیلاتی که از مستندهای عامه‌پسند دریافت کردن به علم نگاه می‌کنن. وقتی مردم متوجه بشن که با چه وسواسی این یافته‌ها به دست اومده در تحلیل‌ها و بررسی‌های روزانه‌شون هم تفاوت ایجاد می‌کنن و در نهایت رفتار منطقی‌تری از خودشون نشون میدن. برای همینه که بعضی‌ها این روزها بیشتر از ترویج علم به دنبال ترویج «تفکر علمی» یا «تفکر انتقادی» هستند.

پرداختن به موضوعات کمتر پرداخته شده در ترویج علم!

انبساط کیهان

در سال ۱۹۲۹ ادوین هابل، با کشف جنجالی که انجام داد، درک بشر از جهان پیرامونش را دست‌خوش تغییراتی اساسی کرد. در قرن نوزدهم میلادی، اخترشناسان اجرام سماوی را بسته به این‌که به نظر، شبیه نقطه می‌رسند یا لکه‌ای محو و یا در حال حرکت هستند یا ساکن، به چهار دسته تقسیم و نام‌گذاری می‌کردند:

متحرک ساکن
لکه‌ی محو دنبالهدار سحابی
نقطه‌‌ای سیاره ستاره

در آن زمان تصوری از کهکشان‌های دیگر نبود و همه‌ی جهان قابل مشاهده، محدود به کهکشان راه شیری می‌شد. در این دسته‌بندی، کهکشان‌های امروزی نیز جزو سحابی‌ها به‌شمار آمده‌اند.

در سال ۱۹۱۲ میلادی، وِستو اسلیفر که در پی کشف مواد تشکیل دهنده‌ی چندی از درخشان‌ترین سحابی‌های مارپیچی به‌وسیله‌ی طیف‌سنجی بود، متوجه انتقال در طیف این اجرام شد. این انتقال مربوط به اثر دوپلر بوده و بدین معنی است که جسم مورد نظر نسبت به ناظر در حال حرکت است. اگر این انتقال به سمت طول موج‌های بلندتر باشد، به آن «انتقال به سرخ» گفته می‌شود و جسم در حال دور شدن است. بالعکس، اگر انتقال طیف به سمت طول موج‌های کوتاه‌تر باشد، «انتقال به آبی» گفته می‌شود و جسم در حال نزدیک شدن به ناظر است. از میزان این جابجایی میتوان به سرعت جسم پی برد. اسلیفر با محاسبه‌ی سرعت این سحابی‌های مارپیچی دریافت که آنها با سرعتی بسیار بیشتر از سرعت ستارگانی که قبلا اندازه‌گیری شده بود در حال حرکت بوده و اغلب آنها، در حال دور شدن از ما هستند.

در سال ۱۹۲۳ میلادی، ادوین هابل، ستاره‌شناس آمریکایی، با استفاده از تلسکوپ ۲٫۵ متری هوکر در رصدخانه‌ی ویلسن، متغیرهای قیفاووسی واقع در چندین سحابی مارپیچی که از آن جمله سحابی آندرومدا بود را مورد بررسی قرار داد. (متغیرهای قیفاووسی نوعی از ستارگان متغیر هستند که می‌توان با دانستن دوره تناوب درخشندگی‌شان، فاصله‌ی آنها تا زمین را محاسبه کرد.) هابل دریافت که این فواصل خیلی بیشتر از آنست که بتوانند درون کهکشان راه شیری باشند. درواقع این کشف، اثباتی بود برای این موضوع که کهکشان ما با تمام شکوهش تنها یکی از کهکشان‌های سرگردان در هستی است.

نمودار سرعت برحسب فاصله. Copyright 1929, The Huntington Library, Art Collections and Botanical Gardens

 

دو سال بعد، وی با کمک داده های اسلیفر، نمودار سرعت بر حسب فاصله‌‌ی کهکشان‌ها را رسم کرد و به نتیجه‌ای شگفت‌انگیز رسید: سرعت با فاصله، رابطه‌ای خطی و مستقیم دارد(قانون هابل)؛ درواقع کهکشان‌ها هرچه دورتر باشند با سرعت بیشتری از ما دور می‌شوند و این یعنی جهان در حال انبساط است!

ضریب تناسبی که در قانون هابل وجود دارد، معروف به ثابت هابل یا به بیانی بهتر، پارامتر هابل است. این کمیت جزو مهم‌ترین پارامترهای کیهان‌شناسی است که برای تعیین نرخ انبساط جهان و ویژگی‌های اساسی تحول کیهان نقش ایفا می‌کند. امروزه نیز دانشمندان به دنبال افزایش دقت آزمایش‌ها برای اندازه‌گیری پارامتر هابل هستند تا بتوانند مدل‌های کیهان‌شناسی را بهتر ارزیابی کنند. به عنوان مثال، در ماه ژانویه‌ی امسال، دانشمندان ناسا و اسا(ESA) اعلام کردند که طبق مشاهدات تلسکوپ فضایی هابل، کیهان با سرعتی ٪۵ تا ۹٪ بیشتر از چیزی که انتظار می‌رفت در حال انبساط است.

در سال ۱۶۸۷ میلادی، آیزاک نیوتن، در کتاب معروف خود موسوم به اصول ریاضی فلسفه طبیعی” برای اولین بار بطور مشخص اصل کیهان‌شناسی را مطرح کرد. طبق این اصل، جهان همگن و همسانگرد است؛ به این معنی که اولا جهان در همه‌ی جهات یکسان است(همسانگرد). ثانیا برای هر نقطه‌ای در جهان این ویژگی صدق می‌کند(همگن). در واقع این اصل مبین دیدگاه جهان‌بینی کوپرنیکی است که ما در عالم، حداقل بطور متوسط، هیچ جایگاه خاصی نداریم. امروزه با استفاده از مشاهدات رصدی، علی‌الخصوص تابش زمینه کیهانی، می‌دانیم که این اصل برای مقیاس‌های به اندازه کافی بزرگ، کاملا صادق است.

توصیف انبساط. نگاره از goo.gl/kPQJSA

شاید قانون هابل به نظر با اصل کیهان‌شناسی در تضاد باشد؛ چرا که همه کهکشان‌ها در حال دور شدن از ما هستند و گویی که ما در مرکز جهان قرار داریم. در پاسخ باید گفت که انبساط کیهان نه تنها برای ما، بلکه برای هر نقطه‌ دیگری در جهان اتفاق می‌افتد. برای روشن شدن موضوع، بادکنکی را در نظر بگیرید که مورچه هایی روی آن در حال حرکت هستند. اگر این بادکنک را باد کنیم، هر کدام از مورچه ها اینطور احساس می‌کند که مابقی مورچه‌ها در حال دور شدن از آن هستند. با بیشتر شدن فاصله‌‌ی مورچه‌ها از یکدیگر، اثر انبساط بادکنک بیشتر شده و با سرعت بیشتری از یکدیگر دور می‌شوند.

در سال ۱۹۸۸ میلادی، دو تیم تحقیقاتی که به‌طور هم‌زمان در حال مطالعه بر روی انتقال به سرخِ ابرنواخترهای نوع Ia بودند، به کشفی بزرگ دست یافتند. (ابرنواخترهای نوع Ia نوع خاصی از ابرنواخترها هستند که برای تعیین فواصل کیهانی تا چند صد مگا پارسک مورد استفاده قرار می‌گیرند). آنها هر یک بطور مستقل دریافتند که کیهان، در حال انبساط شتابدار است. درواقع نه‌تنها عالم در حال منبسط شدن است، بلکه سرعت این انبساط نیز در حال افزایش است. به خاطر این کشف بزرگ، جایزه نوبل فیزیک سال ۲۰۱۱ به‌صورت مشترک به سه نفر از نمایندگان این پروژه، به نام‌های آدام ریس، سل پرلموتر و برایان اشمیت، داده شد.

مدل لامبدا-سی دی ام. نگاره از ویکی‌پدیا

تا قبل از کشف این موضوع، کیهان‌شناسان تصور می‌کردند که انبساط جهان کند شونده بوده و رفته رفته از سرعت انبساط کاسته می‌شود تا سرانجام به سمت صفر میل کند. برای جهانی با انبساط تندشونده در چارچوب نظریه نسبیت عام، می‌توان به وسیله‌ یک مقدار مثبت از ثابت کیهان‌شناسی که معادل با انرژی خلا مثبت یا همان انرژی تاریک است، آن را توصیف کرد. این مدل موسوم به «مدل لاندا سی دی ام» می‌باشد. البته مدل‌های دیگری نیز می‌توان در نظر گرفت. با این وجود، این مدل به‌دلیل هم‌خوانی با داده‌ها، تاکنون با اقبال بیشتری روبرو بوده است.

 

راهی که آمدیم؛ مروری کوتاه بر دستاوردها و چالش‌های فیزیک نظری

در گوشه‌ای از جهان هستی

در قلب توده‌ بزرگی از ماده‌ی تاریک، در نقطه‌ای از کهکشان مارپیچی بزرگمان، بر روی سیاره‌ی خارق‌العاده‌ای که به دور خورشید با شکوهمان می‌چرخد، در ادامه‌ی زنجیره‌ای که هنوز تنها اثری از حیات زنده در کیهانمان است، ما نیز شروع به زندگی کردیم. به عنوان گونه‌ای با قدرت تفکر، همیشه به دنبال زبانی برای برقراری ارتباط با محیط اطرافمان بوده و هستیم. گاه با هدف رفع نیاز، گاه برای رفع حس کنجکاوی سیری ناپذیرمان و حتی گاهی در اثر ترس! اما هدف هرچه بود و هرچه هست، امروز درجای عجیبی از تاریخ علم ایستاده‌ایم و با غرور به جهانی نگاه می‌کنیم که نه آن‌طور که ما دلمان می‌خواهد، بلکه آن گونه که واقعا هست، در برابر ما ایستاده است.

شما اینجا هستید!

ما همیشه می‌خواستیم با طبیعتمان سخن بگوییم، و در طول تاریخ، فیزیک راهی بود که برای این هدف انتخاب کردیم. فیزیک زبان مشترک ما و طبیعت شد. ما مشاهده می‌کردیم، بعدها یاد گرفتیم ثبت کنیم، بر پایه‌ی مشاهداتمان فرضیه سازی کردیم و جلو رفتیم. زمینمان را تخت تصور میکردیم، هر کدام از سیارات و ستاره ها را خدایی می‌پنداشتیم که باید نیایش کنیم، وگرنه بر ما عذاب می‌فرستند. در ذهنمان خدایان ناشناخته‌ای ساختیم که شب و روز را پدید می‌آوردند. خدایانی که غروب خورشید را می‌خوردند و صبح باز او را به دنیا می‌آوردند. خدایانی که صبح از شرق برمی‌خاستند، در طول روز در آسمان سیر می‌کردند و غروب مانند پیرمردان در بستر می‌مردند. رعد و برق، خشم خدایان بود و زلزله خشم مادرمان زمین.

فرضیه ساختیم، خیالبافی کردیم و جلو آمدیم. سفر کردیم، اختراع کردیم، تا آنجا که زمین و آسمان را هر روز بهتر و بهتر شناختیم. فرضیاتمان به مرور حقیقیتر میشدند، از محیطمان به زیباترین وجه استفاده می‌کردیم، ویژگیهایش را میدانستیم، دارو می‌ساختیم، ظروف زیبا، وسایل نقلیه، ساختمان‌های باشکوه ، اما هنوز پیوند عمیقی برقرار نبود. با طبیعتمان به زیبایی زندگی میکردیم اما زبانش را نمیدانستیم. همیشه نگاهمان به آسمان هم معطوف بود. آسمان پر رمز و راز را می‌دیدیم. ستارگانی را که هر شبمان را زیبا می‌ساختند، در صورت‌های فلکی دسته بندی کردیم. علم اخترشناسی را به جود آوردیم و هر شب آسمان را رصد میکردیم. همه چیز را میدیدیم، اما هنوز علت‌ها ناشناخته بود.

نظریه  زمین‌مرکزی بطلمیوس

بطلمیوس که بین سالهای ۹۰ تا ۱۶۸ میلادی زندگی میکرد، معتقد بود زمین در مرکز جهان قرار دارد، و ماه و خورشید و سایر سیارات، به دور آن میچرخند. در این نظریه، سیارات مداری نداشتند و انگار بر روی صفحه‌ای شیشه‌ای به نام فلک چسبیده بودند و فلک به دور زمین در گردش بود. او معتقد بود که ۸ یا ۹ فلک وجود دارد و بر روی فلک آخر، ستاره‌ها چسبیده‌اند.

یک نقاشی قدیمی برآمده از طرز تفکر بطلمیوسی (زمین‌مرکزی) – نگاره از ویکی‌پدیا

پس از این فلک، که به آن فلک الافلاک می‌گفتند، خداوند و فرشتگان زندگی میکردند. این نظریه که به آن زمین مرکزی میگویند شاید یکی از نخستین نظریات جامع و منسجم ما درباره ی کیهانمان بود. این باور نزد ما پذیرفته شده بود. ما در مرکز جهان هستی، بر روی سیاره‌ی زیبایمان نشسته بودیم و همه به دور ما می‌گشتند. کلیسا نیز این فرضیه را بشدت تبلیغ می‌کرد. خیالی خوش و پرغرور اما ناپایدار. تا بالاخره در تاریخمان گالیله پیدا شد. او بود که گفت نه تنها ما مرکز جهان نیستیم، بلکه ما و چند سیاره‌ی دیگر همه و همه به دور خورشید زیبایمان میگردیم. او نگاه ما را به طبیعت و به ویژه علم مکانیک دگرگون کرد، و در یک کلام، او نخستین پیوند میان طبیعت و ریاضیات را در قلب علم حرکت شناسی نشان داد. وقتی به او فکر می‌کنم، و به جهانی که پیش از او می‌شناختیم، تصمیم و کار بزرگش بسیار ترسناک به نظرم میرسد. تصور کنید در خانه‌ای نشسته‌ایم، دیوارهایش را با رنگ‌های بسیار زیبا نقاشی کرده‌ایم و تصور می‌کنیم تمام حقیقت، هرآن چیزی است که در نقاشی‌هایمان کشیده‌ایم. ناگهان مردی از راه می‌رسد، دیوارها را خراب می‌کند،نقاشی‌ها را می‌سوزاند، ما را وسط تاریکی بی‌انتهایی رهایمان می‌کند و تنها مشعلی به دستمان می‌دهد. او نم‌یداند نتیجه‌ی جستجویمان چه خواهد بود، اما باور دارد حقیقت بسیار زیباتر و موثرتر از تمام نقاشیهایمان بر در و دیوار خانهمان است. او به درستی و زیبایی حقیقت باور دارد. ما این مشعل را گرفتیم و جلو آمدیم.

نیوتون و ادامه‌ی راه

مفهوم گرانش را فهمیدیم. حرکت سیارات را توجیه کردیم. مهندسی نوینی بر پایه‌ی معادلاتش بنا کردیم. علم مهندسی هر روز زندگی را ساده‌تر میکرد. اما سوالات ما پایانی نداشت. مطالعه بر روی نور از زمان نیوتون جدی‌تر دنبال می‌شد. تلسکوپ گالیله که یکی از دستاوردهایش کشف چند قمر از اقمار مشتری بود، به وسیله‌ی نیوتون اصلاح شد و کار رصد آسمان را اندکی بهبود بخشید. همچنین مطالعه‌ی ما بر روی الکتریسته و مغناطیس روز به روز بیشتر می‌شد و کسانی ماند لنز، فارادی، آمپر و دیگران ماهیت بار الکتریکی را معرفی کردند. سرانجام دوران طلایی فیزیک فرا رسید. در اواخر قرن نوزدهم، تامسون مدل اتمی‌اش را ارائه کرد. رادرفورد اولین بار مفهوم هسته را معرفی کرد. پروتون‌ها و نوترون‌ها شناخته شدند و سرانجام مدل سیاره‌ای توسط نیلز بور ارائه شد. مدلی که اگر درست بود بنابر نظریه‌ی الکترومغناطیس، به ناپایداری اتمها و نابودی اتم منجر میشد. در این زمان بشر به آزمایش‌هایی دست می‌زد که یکی پس از دیگری ناتوانی فیزیک نیوتونی را در توضیح مسائلی روشن‌تر می‌ساخت. اینطور به نظر میرسید که باز راهمان را گم کردهایم.

اما نه!

ما میدانستیم ماشینهایمان، هواپیماها و تمام علم ساختمان، بر پایه‌ی فیزیک نیوتونی دقیق و زیبا کار می‌کنند و جلو می‌روند. اینجا بود که به اصل بسیار زیبای همخوانی رسیدیم. اصلی که سنگ بنا و شرط اساسی تمام نظریاتمان شد:

اگر نظریه ی جامعی ارائه می‌شود، این نظریه باید در شرایط خاصی که مکانیک نیوتونی برقرار است، معادلات نیوتون را بدست دهد.

برای مثال، اگر به دنبال نظریه‌ی جامعی هستیم که قلب اتم را نیز برایمان توضیح دهد، چنانچه در معادلاتمان باز از اتم به اجسام عادی و سرعت‌های معمولی رسیدیم، باز معادلات باید همان معادلات نیوتون شوند. و این اصل چراغ راهمان شد. تابش جسم سیاه، اثر فوتوالکتریک، اثر کامپتون و … هر یک بیش از پیش ما را به سمت نظریه‌ی شگفت‌انگیز کوانتوم سوق داد.

دوگانگی موج و ذره یکی از مفاهیم عجیب مکانیک کوانتومی- نگاره از ویکی‌پدیا

با مکانیک نیوتونی و درک ماهیت موجی-ذره‌ای در ابعاد کوانتومی، هایزنبرگ ، شرودینگر و دیراک زبانی ساختند بسیار مدرن که ما را به اعماق ماده راه داد. در اوایل قرن بیستم بود که اینیشتین با تئوری زیبای نسبیت خاصش از راه رسید. نظریه‌ای که در پاسخ به مسئله‌ی یکسان بودن سرعت نور نسبت به هر ناظر لخت با هر سرعتی نوشته شده بود. این نظریه نشان داد که در سرعت‌های بالا،  زمان هم از نگاه ناظرهای مختلف متفاوت است و به این صورت، مفاهیم قدیمی فضا و زمان به هم گره خوردند و مفهومی بنیادیتر به نام فضا-زمان شکل گرفت. اما زیبایی بی‌نظیر معادلات نسبیت خاص درآن بود که اگر سرعت متحرک نسبت به سرعت نور کم میبود -مثلا در حد سرعت حرکت ما و وسایل نقلیه‌مان- معادلات باز به همان معادلات آشنای نیوتون میرسید. پس ظاهرا ما همه چیز را می‌دانستیم. در قلب ماده مکانیک کوانتوم جواب سوالاتمان را می‌داد. برایمان هسته و اتم را توضیح داد. اتم شکافتیم. انرژی گرفتیم و با توحشی که هنوز در وجودمان تمامی ندارد بمب ساختیم. در سرعتهای بالا، معادلات نسبیت حلال مشکلاتمان شد و هنگامی که سرعت کم میشد و ابعاد ماده به ابعاد معمولی میرسید، معادلات نیوتون زندگی روزمره‌مان را پاسخگو بود.

نیروی گرانشی چه؟

آیا گرانش همانگونه که نیوتون تصور کرده بود، شکلی از نیرو بود؟ و این باز آلبرت اینیشتین بزرگ پس از حدودا یک دهه از ارائه‌ی نسبیت خاص، نسبیت عام را مطرح کرد و از گرانش نه به عنوان یک نیرو که به عنوان اثری هندسی نام برد. در واقه آنچه به عنوان نیروی گرانشی می‌شناسیم چیزی نیست جز خمیدگی فضا-زمان در اثر وجود ماده. از دل این تئوری ، سیاهچاله‌ها، کرمچاله‌ها و امواج گرانشی سربرآوردند. ترکیب این نظریه با شواهد رصدی مبنی بر انبساط کیهان، معادلات فریدمان در توصیف کیهان را بدست داد. این معادلات ما را به بیگ بنگ رساندند. جایی که احتمالا آغاز فضا-زمان و در نتیجه کیهان زیبای ماست. سرانجام با اضافه کردن نظریه‌ی تورم و همچنین کشف اثرات ماده‌ی تاریک و انرژِی تاریک، به مدل استاندارد کیهانشناسی رسیدیم. مدلی که کیهانی را شرح می‌دهد که از مه‌بانگ آغاز کرده، ناگهان تورم یافته و سپس ذرات در آن شکل گرفته‌اند. ذرات ماده و ضد ماده و همچنین چیزی به نام ماده‌ی تاریک که البته هنوز هویتش را نمی‌دانیم. ماده بر ضد ماده غلبه کرده و همین موجب شکل‌گیری کهکشان‌های زیبا، سیارات و ستاره‌ها شده است. ماده‌ معمولی که میشناسیم که تنها ۵ درصد از کل جهان را تشکیل داده است. این ماده شامل کوارک‌ها که تشکیل دهنده‌ی نوترون و پروتون‌اند، نوترینوها، آنتی نوترینوها و ذرات دیگر است که همه و همه در مدل استاندارد ذرات بنیادی به زیبایی کنار هم نشسته‌اند.

تاریخچه انبساط جهان

پس از موفقیت‌های مکانیک کوانتومی، مثل هر نظریه‌ی دیگری، معایبش هم آشکار شد و یکی از آن عیب‌ها، ناتوانی مکانیک کوانتومی در حل مسائلی بود که طی آنها ذره خلق میشد. این موارد ما را به سمت نظریه‌ی میدان‌های کوانتومی سوق داد، که ریچارد فاینمن آن را پایه ریزی کرد و رسما دید ما به جهان زیر اتمی تکامل زیبایی یافت. در سالهای اخیر با پیشرفت‌های چشم‌گیر تکنولوژی و علوم مهندسی، بالاخره وجود ذره‌ی هیگز تایید شد. تابش زمینه‌ی کیهانی هر روز مطالعه می‌شود. سال گذشته پیشبینی صد ساله‌ی آلبرت اینیشتین تحقق یافت و امواج گرانشی آشکار شدند. پس این طور به نظر میرسد که هر روز بیشتر از روز قبل با طبیعتمان به زبان مشترکی میرسیم. هر روز بیش از قبل زیبایی ریاضیاتمان، و نظریاتی که می‌نویسیم آشکار می‌شود.

پرسش‌های پیش‌رو

اما هنوز علامت سوال‌های بزرگی در پیش است. ماده‌ی تاریک واقعا چیست؟ انرژی تاریک چیست؟ این دو روی هم رفته ۹۵ درصد از جهان ما را تشکیل می‌دهند و هنوز برایمان ناشناخته‌اند. نظریات جدیدمان تا چه اندازه کارآمدند؟ تئوری ریسمان، نظریه‌ی ابرتقارن، گرانش تعمیم یافته، کیهان شناسی مدرن و … . هر روز بیش از قبل پیشرفت می‌کنیم و به کشف حقیقت نزدیک می‌شویم.‌ اما واضح است که در پی اینچنین تلاشی به قدمت عمر ما بر روی این کره‌ی خاکی، سوالات زیادی حل نشده باقی مانده‌اند و این چالش بزرگی پیش روی زیباترین وجه ریاضیات، یعنی فیزیک نظریست.

مدتی پیش کتابی میخواندم به نام «درباره‌ی معنی زندگی» از ویل دورانت.

اوبث اشاره می کرد که تلاش ما برای یافتن حقیقت، در واقع تمام اعتماد به نفسمان را از بین برد . چرا که زمانی ما مرکز جهان بودیم و همه چیز معطوف به ما بود. اما دانشمندان نشان دادند که ما گونه‌ای ناتوان در گوشه‌ای از این جهانیم و روزی تنها خورشیدی که میشناسیم نابودمان خواهد کرد و مولکول‌های ما تجزیه خواهد شد و آن روز پایان ماست. این جمله و نگاهش اگرچه از دید یک فیلسوف جالب و قابل تامل است، اما من قویا معتقدم حقیقت، بسیار زیباتر از امنیت ساختگی به وسیله‌ی توهم است. حقیقت هرچه هست، به ذات خود زیباست و این زیبایی دوچندان میشود وقتی به زبان ریاضی بیان میگردد. این جادوی فیزیک است.

همانگونه که زمانی فاینمن گفت:

«شاعران گفته‌اند که علم زیبایی ستاره ها را ضایع میکند، چون که آنها را صرفا کره‌هایی از اتم‌ها و مولکول‌های گاز می‌دانند. اما من هم میتوانم ستاره‌ها را در آسمان شب کویر ببینم و شکوه و زیبایی‌شان را حس کنم. می‌توانم این چرخ فلک را با چشم بزرگ تلسکوپ پالومار تماشا کنم و ببینم که ستاره ها دارند از هم‌دیگر، از نقطه ی آغازی که شاید  زمانی سرچشمه‌ی همگی‌شان بوده است دور می‌شوند. جست‌وجو برای فهمیدن این چیزها گمان نمی‌کنم لطمه‌ای به رمز و راز زیبایی این چرخ فلک بزند. راستی شاعران امروزی چرا حرفی از این چیزها نمی‌زنند؟ چه جور مردمانی هستند این شاعران که اگر ژوپیتر خدایی در هیئت انسان باشد چه شعر ها که برایش نمی‌سرایند اما اگر در قالب کره‌ی عظیم چرخانی از متان و آمونیاک باشد سکوت اختیار میکنند؟»

اگر شما هم به دنبال زیبایی‌های جهان بی‌نظیرمان هستید، به دنیای ریاضیات خوش آمدید.

کلاس جدید در کورس‌ارا، «از مه‌بانگ تا انرژی تاریک»

امروزه من تقریبا انتظار دارم که همه coursera رو بشناسند. نهادی که با تلاش چند نفر از اساتید دانشگاه استنفورد، مثل Daphne Koller ایجاد شد، تا به همه‌ی افراد جهان فرصت یادگیری بهتر رو ارائه کنه. مطمئنا آینده‌ی نوع بشر به این حرکت افتخار خواهد کرد. (این سخنرانی Daphne Koller توی تد رو از دست ندید.)

بهونه‌ای که باعث شد اینجا در موردش بنویسم، این کلاس جدید بود: «از مه‌بانگ، تا انرژی تاریک». البته به نظر می‌رسه که این کلاس بیشتر جنبه‌ی اطلاعات عمومی سطح بالا داشته باشه، تا یه کار آکادمیک. اما برای کسانی که فیزیک رو حرفه‌ای دنبال نمی‌کنن گزینه‌ی بی‌نظیر و جذابیه.

کورس ارا

از یادگیری لذت ببرید. 🙂

فراتر از تاریکی …!!!

سیب به سر نیوتن سقوط میکند و او از خود میپرسد : چرا سیب به سمت پایین آمد و بالا نرفت ؟؟؟ شاید آن زمان تصور میشد که این مسئله با این جمله ارسطو که : اجسام تمایل دارند به حالت اولیه و اصل خود بازگردند ؛ حل شده است ولی نیوتن با دید شکاکانه ای به مسئله نگاه کرد ، او از خود میپرسد که چرا وقتی جسمی به سمت پایین پرتاب میشود رفته رفته بر سرعتش افزوده میگردد ؟؟؟ چه چیزی باعث افزایش سرعت آن میشود ؟؟؟ او جای خالی چیزی را احساس میکرد که باعث افزایش سرعت سقوط اجسام میشد ؛ او اسم آن را نیروی گرانش گذاشت و آن را عامل افزایش سرعت سقوط میدانست ؛ حال کمی جلوتر می آییم ، در سالهای ۱۹۲۵ تا ۱۹۲۹ ادوین هابل با مشاهده کهکشان های دیگر و با توجه به طیف نوری رسیده از کهکشان ها اکثرا به قرمزی متمایل است ؛ نتیجه گرفت که کهکشانها در حال دور شدن از ما هستند و با محاسبه سرعت دور شدن آنها به این نتیجه رسید که آنها با شتابی که بر آن افزوده میشود در حال دور شدن از ما هستند .( مثل اینکه توپی را از روی سطح زمین به سمت بالا پرتاب کنید و هر لحظه بر شتاب آن افزوده شده و از زمین با سرعت بیشتری دور شود ) دانشمندان مانند نیوتن از خود این سوال را پرسیدند که : چه نیرویی این فرآیند را انجام میدهد و این شتاب را به کهکشان ها میدهد ؟؟؟ و اینکه : چرا فاصله ی کهکشانی افزایش می یابد ، ولی در داخل کهکشانها فاصله ستاره ها ثابت است ؛ به عبارت دیگر چرا کهکشان ها مانند جهان انبساط پیدا نمیکنند؟؟؟ آنها برای حل این مشکل نیرویی را به نام انرژی تاریک پیشنهاد دادند که باعث انبساط عالم میشود . البته نامگذاری آن به انرژی تاریک بدلیل مبهم بودن و ناشناخته بودن آن است( مانند پرتو x) ، همان طور که یک اخترشناس در این باره می‌گوید: «به یاد داشته باشید که ما این پدیده را انرژی تاریک می نامیم اما این نامگذاری ممکن است این باور غلط را در ذهن مخاطبان ایجاد کند که ما حقیقتاً می دانیم که آن پدیده چیست. اما باید اذعان داشت که ما واقعاً چیز زیادی در این باره نمی دانیم». دانشمندان پس از اندازه گیری این نیرو متوجه شدند که حدود ۷۳ درصد از جرم – انرژی جهان را میسازد و این یعنی هنوز تا فهمیدن جهان اطرافمان راه طولانی در پیش داریم .

منبع : ویکیپدیا