این هفته، در مورد هندسه فرکتالی یک سخنرانی در دانشگاه شهید بهشتی داشتم با موضوع «مقدمهای بر هندسه فرکتالی» میتونید ویدیوی این سخنرانی رو ببینید. همینطور اسلایدها و فایل صوتی:
توی قسمت قبلی دیدیم که اگر هر تابع f رو داشته باشیم میتونیم برای اون تابع مجموعهی ژولیای مربوط به اون رو پیدا کنیم که خب یکمی از کامپیوتر هم کمک گرفتیم. کار ما این بود که یک تابع رو بر میداشتیم شرایط اولیهای (یک سری نقطه توی فضای مختلطی (موهومی)) بهش میدادیم، مقدار تابع رو به ازای اون شرایط اولیه به دست میاوردیم و همین طور دوباره این مقدار رو به تابع میدادیم و این روند رو ادامه میدادیم تا ببینیم آیا شرایط اولیهای که انتخاب کردیم به بینهایت میل میکنه یا نه، اگر نمیکرد اون موقع مجموعهی ژولیا اون تابع رو تشکیل میداد. همین طور گفتیم که از بین همهی توابع، توابعی که به صورت چندجملهای های مربعی میباشند بیشتر مشهور هستند؛ توابعی با فورم: $$f(z)=z^2 +c$$توی این پست در مورد علت این شهرت توضیح میدم؛
تابع ${f(z)=z^2 +c}$ رو در نظر بگیرید؛ فراموش نکنید که c میتونه هر عددی – ولی حتما مختلط – باشه. حالا اگر با نقطهی z=0 شروع کنیم، به این دنباله میرسیم:
$$ c , c² + c , (c²+c)² + c , ((c²+c)²+c)² + c , (((c²+c)²+c)²+c)² + c , …$$
اگر این دنباله واگرا نباشه، یعنی اگر c هایی انتخاب کنیم که در نهایت این دنباله به بینهایت نرسه اون موقع مجموعهی ژولیایی که توسط این cها برای تابع ${f(z)=z^2 +c}$ ساخته میشه، «همبند» هست. احتمالای توی نظریهی گراف با مفهموم همبند بودن آشنا شدین (معمولا سال آخر دبیرستان بچههای رشتهی ریاضی فیزیک نظریهی گراف رو توی درس ریاضیات گسسته میخونند!) اگر نشدین، همبند بودن یک جور مفهموم متصل بودن رو داره، وقتی یک گراف یا شبکهای همبند باشه اونموقع اگر شما از یک نقطهای شروع به حرکت کردید، میتونید به هر نقطهای که دلتون میخواد برید وبدون اینکه جایی مسیرتون قطع بشه. خلاصه این که اگر دنبالهای که ساختیم واگرا
نشد اون موقع ما یک مجموعهی ژولیای همبند میتونیم بسازیم. (اثبات این مطلب فراتر از حوصلهی ماست!) خب حالا این مجموعهی ژولیای همبند به چه دردی میخوره آیا؟! اجازه بدید تا یک مجموعهی جدید معرفی کنیم به نام «مجموعهی مندلبرو».
«مجموعه مندلبرو شامل نقاطی (c) از صفحهی مختلط هست که به ازای آن ها مجموعهی ژولیا تابع ${f(z)=z^2 +c}$ همبند باشد.»
شما میتونید یک برنامه بنویسید تا براتون مقادیری که C ممکنه بگیره رو پیدا کنه ولی یک نکتهای هست و اون اینه که همهی مجموعههای ژولیا همبند شامل نقطهی 0 = 0+ z= 0i هستند! بنابراین «اربیت» یا «چرخش» یا «تکرار» مبدا برای این دسته از مجموعه ها، همیشه باید یک مقدار کراندار باشه و به بینهایت میل نکنه، پس نقطهی صفر در همهی مجموعههای ژولیای همبند صدق میکنه. به طور مشابه در همهی مجموعههای ژولیای ناهمبند نقطهی صفر وجود نداره! خب این یک سنگ محکی شد برای تشخیص اینکه آیا نقطه c دلخواهی عضو مجموعهی مندلبرو هست یا نه! یعنی کافیه تا ما «اربیت» یا «چرخش» یا «تکرار» نقطهی z=0 رو برای تابع ${f(z)=z^2 +c}$ بررسی کنیم، اگر مقادیری که به دست میاند (همون «اربیت» یا «چرخش») کراندار باشند اون موقع اون c مورد نظر ما عضو مجموعه مندلبرو هست ولی اگر به بینهایت میل کنه اونموقع اون c دیگه عضو مجموعه مندلبرو نیست! شرمنده 😀
مجموعهی مندلبرو یکی از موضوعات دینامیک مختلطه که برای اولین بار ایدهش اوایل قرن بیستم توسط ریاضیدانان فرانسوی بهنام «فاتو» و«ژولیا» مطرح شد. اون موقعها هنوز کامپیوتر زیاد رونق نداشت برای همین مثلا فاتو نتونست شهود و تصویر خوبی از این مجموعه ارائه بده. تا اینکه مندلبرو اول مارس ۱۹۸۰(اواخر قرن بیستم!) به لطف کامپیوترهای شرکت IBM تونست این کار رو انجام بده و بعدش هم این موضوع رو گسترش زیادی داد. آدمهای زیادی بعد از مندلبرو روی این موضوع کار کردند ولی به خاطر خدمات مندلبرو یا به احترام مندلبرو، اسم این مجوعه رو «مجموعه مندلبرو» گذاشتند!
این مجموعه در حقیقت یک فرکتال هست با مرز بسیار بسیار پیچیده، جوری که شیشیکورا ثابت کرد (۱۹۹۸) که بعد این مرز ۲ هست! این فرکتال برخلاف مجموعهی ژولیا کاملا خودمتشابه نیست و اگر روی شکل زوم کنید این رو به راحتی متوجه خواهید شد!
همین طور این مجموعه توی صفحهی مختلط، توی دیسکی یه شعاع ۲ قرار میگیره و تقاطع اون با محور حقیقی بازه [۰/۲۵, ۲-] هست. حدودا دو سال پیش مساحت مجموعه مندلبرو 0.0000000028 ± 1.5065918849 واحدمربع تخمین زده شد! پیشنهاد میکنم حتما به صفحهی ویکی پدیای این مجوعه عجیب و غریب سر بزنید، مخصوصا اگر دوست دارید که الگوریتمهایی که برای تولید این دسته از فرکتالها مورد استفاده قرار میگیرند چه جوری هستند!
برای مطالعه، پیشنهاد میکنم کتاب زیر رو بخونید، خیلی خوب توضیح داده هم فرکتالها رو هم آشوب رو!
به عنوان حسن ختام، یک جمله از مندلبرو رو نقل میکنم (از سخنرانی تد ۲۰۱۰) : «خب، اجازه دهید تمام کنم. این شکل در اینجا تنها از یک تمرین در ریاضیات محض بوجود آمد. ظهور شگفتی های بی پایان از قواعد ساده، که بی نهایت تکرار می شوند.»
در قسمتهای قبل در مورد فرکتالها و ویژگیهاشون نوشتم. این قسمت و قسمت بعد در مورد مجموعهای از اعداد که اشکال فرکتالی میسازند هست.
به عنوان مقدمه، تابع رو در نظر بگیرید. اگر به عنوان یک نقطهی شروع x=۲ رو به تابع بدیم مقدار تابع میشه ۲ به توان ۲ یعنی ۴. حالا اگر باز این ۴ رو به تابع بدیم، جواب ۱۶ میشه و اگر این روند رو ادامه بدیم به عددهای بزرگتر میرسیم. همین طور اگر از نقطهی x=-۳ شروع کنیم، به ۹ و بعد از اون به ۸۱ و مجددا به عددهای بزرگتری میرسیم.
هر دوی این نقاط بعد از تکرارهای پی در پی به بینهایت نزدیک میشند. اما اگر این بار یک نقطه از بازهی [۱،۱-] انتخاب کنیم چی؟ مثلا اگر ۰/۵ رو انتخاب کنیم به توان دو که برسه میشه ۲۵/. بعدش ۶۲۵./. و همین طور عددهای بعدی کوچیک و کوچیکتر میشند و به صفر میل کنند.
در حقیقیت هر عددی که انتخاب کنیم در نهایت (پس از تکرارهای پی در پی) سرانجام و عاقبتش دو حالت داره؛ یا خیلی رشد میکنه و به یک حد بی کران میرسه یا اینکه در آخر به یک مقدار ثابت همگرا میشه که برای این تابع اعداد ۱ و ۱- به ۱ همگرا میشند و همهی اعداد حقیقی بین ۱- و ۱ به صفر. اعداد خارج این بازه هم که اصلا همگرا نمیشند!
خب بعد از این مقدمه، به یک تعریف میرسیم: «به مجموعهای از شرایط اولیه که پس از تکرارهای پیدرپی توسط یک تابع به بینهایت میل نمیکنند، مجموعهی ژولیای آن تابع میگویند.» مثلا برای تابعشرایط اولیه (اعداد) عضو بازهی [۱،۱-] پس از تکرارهای پیدرپی به بینهایت نمیرسند ولی برای خارج از این بازه این طور نیست و همون جوری که دیدید بعد از تکرارهای پیدرپی به بینهایت میرسند. در حقیقت به مجموعه [۱،۱-]=S یک «مجموعهی توپور ژولیا» میگند و منظور از مجموعه ژولیا مرز بین دو مجموعه است؛مجموعه شرایط اولیهای که به بینهایت میرسند و مجموعه شرایط اولیهای که به بینهایت نمیرسند! یعنی برای تابع مجموعه ژولیا {J ={-1,1 است که شامل دو عدد ۱+ و ۱- میباشد! به عبارت دیگه اگر روی محور xها بخواییم مشخص کنیم فقط دو تا نقطه به عنوان مجموعهی ژولیا تابع مشخص میشه؛ x=1 و x= -1!
خب تا اینجا زیاد جذاب نبود و فقط یک تعریف رو مطرح کردیم! حالا برای ایجاد جذابیت بیایید و وارد اعداد موهومی بشیم. تفاوت اعداد حقیقی و موهومی در اینه که اعداد حقیقی روی یک خط هستند ولی اعداد موهومی روی یک صفحه قرار میگیرند. هر عدد موهومی به صورت z=a+ib نوشته میشه که a, b هر دو اعداد حقیقی و i واحد موهومی ساز هست جوری که طبق تعریف: i2 = −1 ! اگر با این دسته از اعداد هنوز آشنایی ندارید، سخت نگیرید، ایدهی آسونیه، میتونید نگاه کنید به صفحه ویکیپدیا یا اینکه اگر اشتیاق بیشتری به یادگیری دارید بهتون پیشنهاد میکنم کتاب «متغیرهای موهومی و کاربردها» نوشتهی جیمز براون و روئل چرچیل رو یه نگاهی بندازید! الان همون تابع قبلی رو در فضای موهومی مینویسیم:
در مورد این تابع، مجموعهی ژولیا، مجموعه نقاطی هست که روی دایرهای به شعاع ۱ و به مرکز مبدا مختصات قرار میگیرند. یعنی مجموعه نقاط روی دایره و درون دایره r=1 مجموعهی توپور ژولیا رو میسازند. این به خاطر اینه که اعداد موهومی روی صفحه مشخص میشند. (شما این تعبیر رو با نوشتن صورت قطبی اعداد موهومی بهترین میتونید ببینید؛ یادتون باشه که ما دنبال اعدادی هستیم که (z) عضو بازهی [۱،۱-] باشند تا بعد از تکرارهای پیدرپی، اعداد حاصل از به توان ۲ رسوندن به بینهایت میل نکنند! صرفا جهت یادآوری عرض کنم که برای به توان رسوندن یک عدد موهومی z=a+ib مثل به توان رسوندن چند جملهای ها عمل میکنیم ولی به این نکته توجه میکنیم که طبق تعریف i2 = −1 !)
خب یکمی جالبتر شد، از دو نقطهی x=1 و x= -1 توی قسمت قبل این دفعه به یک دایره رسیدیم در فضای موهومی. برای جذابیت بیشتر بیایید و این دفعه تابع رو تغییر بدیم و از این تابع استفاده کنیم و ببینیم که چی میشه! یعنی اون نقاطی رو پیدا کنیم که بعد از تکرارهای متوالی توسط این تابع به بینهایت میل نکنند. راستش این دفعه به سادگی دفعهی قبل نیست که بتونیم سریع کل اون اعداد رو حدس بزنیم و مثلا بگیم که ما دنبال اعدادی هستیم که (z) عضو بازهی [۱،۱-] باشند. خب بیایید و چند تا عدد موهومی رو تست کنیم، روش آزمون و خطا؛ چندتا عدد راحت مثل 0 و i و 1+i و یک عدد یکمی ناراحت ( 😀 ) مثل 0.8 + 0.2i
میبینیم که صفر به طور متناوب به ۱- و صفر میرسه ولی در مورد بقیه اعداد ما، این طوری نیست و مثلا در مورد 1+i همین طور زیاد و زیاد تر میشه.
خب بقیه اعداد رو باید همین جوری با آزمون و خطا پیدا کرد راستش و خب این قدری رنج آوره! اشکال نداره ما خودمون این کارو انجام نمیدیم و میذاریم کامپیوتر بقیه اعداد رو پیدا کنه! من تصویری از نقاطی که مشخص شده رو براتون میذارم تا ببینید که این دفعه شکل دیگه دایره نمیشه و یه شکل عجیب درست میشه! فکر نمیکنم که این شکل رو میشد به این راحتیها حدس زد! برای بهتر دیده شدن تصویر، رزولوشنش رو میشه بیشتر کرد،یعنی تعداد نقاط رو بیشتری رو امتحان کرد:
«این یک شکل خودمتشابه هست!»
اجازه بدید تا یک قسمت از شکل که مشخص کردم رو بزرگترش کنم؛ مثل اینکه سر و کلهی فرکتال ها دوباره پیدا شد!
از حالا به بعد هر تابعی که داشته باشیم رو میتونیم مجموعهی ژولیا مربوط به اون رو پیدا کنیم.بین توابع، توابعی که به صورت چندجملهای های مربعی هستند بیشتر معروف هستند!
$$ f(z)=z^2 +c ,$$ c:مقدار ثابت
حتما به صفحهی ویکیپدیا مجموعهی ژولیا سر بزنید و شکلهای جالبی که توسط توابع مختلف ساخته شده رو ببینید. علت استفاده از رنگ هم اینه: بسته به این که نقاط با چه آهنگی رشد میکنند به اونها یک رنگ خاص اختصاص میدند، ممکنه یک عدد بعد از صد بار تکرار بیشتر از یک میلیون بشه و یک عدد بعد از هزار بار تکرار، اینها باید با هم یک فرقی به هر حال داشته باشند دیگه! به عنوان نمونه من چند تا از تصاویر رو میذارم: